zbMATH — the first resource for mathematics

Problems of MHD stability in thermonuclear fusion plasmas. (English) Zbl 0897.76036
We begin with a short presentation of the equilibrium configuration reached by a plasma in a tokamak, and of the main types of instabilities of such an equilibrium, when the plasma is described by the magnetohydrodynamic equations. Then we give some mathematical results concerning bifurcation theory and nonlinear stability for three types of instabilities; a new three-dimensional finite element code is also presented, with new mathematical and numerical results.
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76M10 Finite element methods applied to problems in fluid mechanics
Full Text: DOI
[1] Berroukeche, M., Thèse université de clermont-ferrand II, (1995)
[2] Berroukeche M., Maschke E.K. & Saramito B., Convergence of an unconditionnally stable semi-implicit scheme for linear incompressible MHD equations , to be submitted · Zbl 0929.76082
[3] Blum, J.; Lefoll, J., Plasma equilibrium evolution at the resistive diffusion timescale, Computer physics reports, 1, 465-494, (1984)
[4] Blum, J., Numerical simulation and optimal control in plasma, physics, Wiley/gauthiervillars series in modern applied mathematics, (1989), Paris
[5] Blum J., Gallouet T. & Simon J., (1986)
[6] Boussari, A., Etude théorique et numérique des instabilités tearing avec résistivité variable, Thèse université de clermont-ferrand II, (1996)
[7] Boussari, A.; Maschke, E.K.; Saramito, B., Thèse université de clermont-ferrand II, (1996)
[8] Boussari, A.; Maschke, E.K.; Saramito, B., Etude numérique des instabilités tearing avec résistivité variable pour une couche plane de plasma, ()
[9] Brezzi; Rappaz; Raviart, Finite dimensional approximation of non linear problems part I: branches of nonsingular solutions, Numer. math., (1980) · Zbl 0488.65021
[10] Bruno, O.; Laurence, P., Existence of 3D toroidal MHD equilibria with nonconstant pressure, Preprint dipartimento di matematica , universita di roma “la sapienza”, 95/9, (1995)
[11] Cenacchi; Taroni, The jet equilibriumtransport code for free boundary plasmas (JETTO), ()
[12] Charlton, L.A.; Holmes, J.A.; Lynch, V.E.; Carreras, B.A., Compressible linear and non linear resistive MHD calculations in toroidal geometry, Jour. comp. phys., 86, 270, (1990) · Zbl 0682.76100
[13] Diaz, J.I.; Rakotoson, J.M., On a non local stationary free-boundary problem arising in the confinement of a plasma in a stellerator geometry, Arch. rat. mech. anal., 134, 53-95, (1996) · Zbl 0925.76968
[14] Edery, D.; Pellat, R.; Soule, J.L., Comp. phys. comm., 24, 427-436, (1981)
[15] Furth, H.P.; Killeen, J.; Rosenbluth, M.N., Finite-resistivity instabilities of a sheet pinch, The physics of fluids, Vol. 6, N∘ 4, (1963)
[16] Greenside; Reiman; Salas, Convergence properties of a nonvariational 3D MHD equilibrium code, Journal of computational physics, 81, 102-136, (1989) · Zbl 0662.76145
[17] Gruber, R.; Troyon, F.; Bernard, L.C.; Rousset, S.; Schreiber, R.; Kerner, W.; Schneider, W.; Roberts, K.V., Erato stability code, Comp. physics comm., 21, 323-371, (1981)
[18] Harley, T.R.; Cheng, C.Z.; Jardin, S.C., The computation of resistive MHD instabilities in axisymetric toroidal plasmas, Journal of computational physics, 103, 43-62, (1992) · Zbl 0781.76038
[19] Harned, D.I.; Kerner, W., Semi-implicit method for 3D compressible MHD simulation of fusion plasmas, Jour. of comp. phys., Vol. 60, 1, 62-75, (1985) · Zbl 0581.76057
[20] Holm, D.D.; Marsden, J.E.; Ratiu, T.; Weinstein, A., Non linear stability of fluid and plasma equilibria, Physics reports, 123, 1 and 2, 1-116, (1985) · Zbl 0717.76051
[21] Hormander, L., The boundary problem of physical geodesy, Arch. rat. mech. anal., 62, 1-52, (1976) · Zbl 0331.35020
[22] Khayrutdinov; Lukash, Studies of plasma equilibrium and transport in a tokamak usion device with the inverse-variable technique, Journal of computational physics, 109, 193-201, (1993) · Zbl 0794.76098
[23] Laurence, P., Some rigorous results concerning spectral theory for ideal MHD, (1985), preprint Courant Institute
[24] Lerbinger, K.; Luciani, J.F., A new semi-implicit method for MHD computations, Journal of computational physics, 97, 444-459, (1991) · Zbl 0738.76051
[25] Lifschitz, A.E., Magnetohydrodynamics and spectal theory, (1989), Kluwer Academic Dordrecht
[26] Lütjens; Bondeson; Roy, Com.p. phys. comm., 69, 287, (1992)
[27] Maschke, E.K.; Berroukeche, M.; Saramito, B.; Valentin, M., MHD instabilities in tokamak plasmas with hollow current profiles, () · Zbl 0960.35082
[28] Maschke, E.M.; Morros-Tosas, J., A representation of MHD and its applications to nonlinear stationary states, Plasma phys. and contr. fus., Vol. 34, N∘ 4, 549-561, (1989)
[29] Mercier, C., Lectures in plasmas physics, (), 5127
[30] Mossino, J., Instabilités MHD en dimension trois, Thèse université clermont-ferrand II, (1994)
[31] Pineau E. & Saramito B., en préparation
[32] Rappaz, J., Approximation of the spectrum of a non compact operator given by the magnetohydrodynamic stability of a plasma, Numer. math., 28, 15-24, (1977) · Zbl 0341.65044
[33] Riedel, K.S., Quasilinear ballooning mode saturation, Phys. fluids B, 1, 9, 1780-1787, (1989)
[34] Saramito, B., Stabilité d’un plasma: analyse mathématique et numérique, ()
[35] Saramito, B.; Maschke, E.K., Successive bifurcations in MHD unstable plasmas, (), 33-42
[36] Schellhase, A.R.; Storer, R.G., Spectral analysis of resistive MHD in toroidal geometry, Journal of computational physics, 123, 15-31, (1996) · Zbl 0839.76058
[37] Schmidt, P.J.; Meir, A.J., ()
[38] Sermange; Temam, Some mathematical questions related to MHD equations, Comm. pure appl. math., 36, 635, (1983) · Zbl 0524.76099
[39] Spada, M.; Wobig, II., On the existence and uniqueness of dissipative plasma equilibria in a toroidal domain, J. phys. A math. gen., 25, 1575-1591, (1992) · Zbl 0748.76112
[40] Tani; Azumi; Devoto, Numerical analysis of 2D MHD equilibrium with noninductive plasmas currents in tokamaks, Journal of computational physics, 98, 332-341, (1992) · Zbl 0741.76028
[41] Tasso, H., Linear and non linear stability in resistive magnctohydrodynamics, Annals of physics, Vol 234, 2, 211-224, (1994) · Zbl 0807.76030
[42] Wesson, J.A., Hydromagnetic stability of tokamaks, Nucl. fus., 18, 1, 87-132, (1978)
[43] Grimm, R.C; Greene, J.M.; Johnson, J.L., Methods compt. physics, 16, 253, (1976)
[44] Harned, D.S.; Schnack, D.D., Semi-implicit method for MHD computations without an alfven wave CFL restriction, Jour. comp. phys., 65, 57, (1986) · Zbl 0591.76187
[45] Bondeson, A.; Vlad, G.; Lütjens, H., (), 906
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.