×

Models of complete theories. (English) Zbl 0112.00701


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] C. C. Chang and H. Jerome Keisler, Applications of ultraproducts of pairs of cardinals to the theory of models, Pacific J. Math. 12 (1962), 835 – 845. · Zbl 0109.00802
[2] A. Ehrenfeucht, On theories categorical in power, Fund. Math. 44 (1957), 241 – 248. · Zbl 0105.00601
[3] A. Ehrenfeucht, Theories having at least continuum many nonisomorphic models in each infinite power, Notices Amer. Math. Soc. 5 (1958), 680-681.
[4] A. Ehrenfeucht and A. Mostowski, Models of axiomatic theories admitting automorphisms, Fund. Math. 43 (1956), 50 – 68. · Zbl 0073.00704
[5] Erwin Engeler, Äquivalenzklassen von \?-Tupeln, Z. Math. Logik Grundlagen Math. 5 (1959), 340 – 345 (German). · Zbl 0092.24903
[6] Erwin Engeler, Unendliche Formeln in der Modelltheorie, Z. Math. Logik Grundlagen Math. 7 (1961), 154 – 160 (German). · Zbl 0109.00702
[7] E. Engeler, Ein Reduktionstheorem für unendliche Formeln, Math. Ann. (to appear).
[8] P. Erdös, L. Gillman, and M. Henriksen, An isomorphism theorem for real-closed fields, Ann. of Math. (2) 61 (1955), 542 – 554. · Zbl 0065.02305
[9] T. Frayne, A. C. Morel, and D. S. Scott, Reduced direct products, Fund. Math. 51 (1962/1963), 195 – 228. · Zbl 0108.00501
[10] Gebhard Fuhrken, Bemerkung zu einer Arbeit E. Engelers, Z. Math. Logik Grundlagen Math. 8 (1962), 277 – 279 (German). · Zbl 0109.00801
[11] G. Fuhrken, First-order languages with a generalized quantifier. Minimal models of first-order theories, Doctoral dissertation, University of California, Berkeley, Calif., 1962.
[12] G. Fuhrken, On minimal models of complete theories, Notices Amer. Math. Soc. 9 (1962), 146. On generalized quantifiers, Ibid. p. 132. A Skolem-type normal form for languages with a generalized quantifier, Ibid., pp. 320-321.
[13] G. Fuhrken and R. Vaught, Non-characterizability of the ordering of the natural numbers, Notices Amer. Math. Soc. 9 (1962), 321.
[14] Leon Henkin, The completeness of the first-order functional calculus, J. Symbolic Logic 14 (1949), 159 – 166. · Zbl 0034.00602
[15] Bjarni Jónsson, Universal relational systems, Math. Scand. 4 (1956), 193 – 208. · Zbl 0077.25302
[16] B. Jónsson, Homogeneous universal relational systems, Math. Scand. 8 (1960), 137 – 142. · Zbl 0173.00505
[17] H. Jerome Keisler, Ultraproducts and elementary classes, Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math. 23 (1961), 477 – 495. · Zbl 0118.01501
[18] Simon Kochen, Ultraproducts in the theory of models, Ann. of Math. (2) 74 (1961), 221 – 261. · Zbl 0132.24602
[19] J. Łoś, On the categoricity in power of elementary deductive systems and some related problems, Colloquium Math. 3 (1954), 58 – 62. · Zbl 0055.00505
[20] J. Łoś, Quelques remarques, théorèmes, et problèmes sur les classes définissables d’algèbres, Mathematical Interpretation of Formal Systems, pp. 98-113, North Holland Publ. Co., Amsterdam, 1955. · Zbl 0068.24401
[21] R. C. Lyndon, Properties preserved under algebraic constructions, Bull. Amer. Math. Soc. 65 (1959), 287 – 299. · Zbl 0087.00903
[22] M. Morley, Categoricity in power, Notices Amer. Math. Soc. 9 (1962) 218. · Zbl 0151.01101
[23] M. Morley, Categoricity in power, Doctoral dissertation, University of Chicago, Chicago, Ill., 1962. · Zbl 0151.01101
[24] Michael Morley and Robert Vaught, Homogeneous universal models, Math. Scand. 11 (1962), 37 – 57. · Zbl 0112.00603
[25] Andrzej Mostowski, Quelques observations sur l’usage des méthodes non finitistes dans la méta-mathématique, Le raisonnement en mathématiques et en sciences expérimentales, Colloques Internationaux du Centre National de la Recherche Scientifique, LXX, Editions du Centre National de la Recherche Scientifique, Paris, 1958, pp. 19 – 32 (French). · Zbl 0105.00503
[26] Rodolfo A. Ricabarra, Conjuntos ordenados y ramificados (Contribución al estudio del problema de Suslin), Instituto de Matematica, Universidad Nacional del Sur, Bahía Blanca, 1958 (Spanish). · Zbl 0097.04102
[27] Abraham Robinson, A result on consistency and its application to the theory of definition, Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 47 – 58. · Zbl 0075.00701
[28] Abraham Robinson, Complete theories, North-Holland Publishing Co., Amsterdam, 1956. · Zbl 0070.02701
[29] C. Ryll-Nardzewski, On theories categorical in power \({\l}eq \aleph _{0}\), Bull. Acad. Polon. Sci., Sér. Math. Astr. Phys. 7 (1959), 545-548. · Zbl 0117.01101
[30] Lars Svenonius, ℵ\(_{0}\)-categoricity in first-order predicate calculus, Theoria (Lund) 25 (1959), 82 – 94. Lars Svenonius, A theorem on permutations in models, Theoria (Lund) 25 (1959), 173 – 178. Lars Svenonius, On minimal models of first-order systems, Theoria (Lund) 26 (1960), 44 – 52. Lars Svenonius, Some problems in logical model-theory, Library of Theoria, No. IV, CWK Gleerup, Lund; Ejnar Munksgaard, Copenhagen, 1960.
[31] Lars Svenonius, ℵ\(_{0}\)-categoricity in first-order predicate calculus, Theoria (Lund) 25 (1959), 82 – 94. Lars Svenonius, A theorem on permutations in models, Theoria (Lund) 25 (1959), 173 – 178. Lars Svenonius, On minimal models of first-order systems, Theoria (Lund) 26 (1960), 44 – 52. Lars Svenonius, Some problems in logical model-theory, Library of Theoria, No. IV, CWK Gleerup, Lund; Ejnar Munksgaard, Copenhagen, 1960.
[32] Alfred Tarski, A decision method for elementary algebra and geometry, University of California Press, Berkeley and Los Angeles, Calif., 1951. 2nd ed. · Zbl 0035.00602
[33] Alfred Tarski, Some notions and methods on the borderline of algebra and metamathematics, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 1, Amer. Math. Soc., Providence, R. I., 1952, pp. 705 – 720.
[34] Alfred Tarski and Robert L. Vaught, Arithmetical extensions of relational systems, Compositio Math 13 (1958), 81 – 102. · Zbl 0091.01201
[35] Robert L. Vaught, Applications to the Löwenheim-Skolem-Tarski theorem to problems of completeness and decidability, Nederl. Akad. Wetensch. Proc. Ser. A. 57 = Indagationes Math. 16 (1954), 467 – 472. · Zbl 0056.24802
[36] R. L. Vaught, Denumerable models of complete theories, Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959), Pergamon, Oxford; Państwowe Wydawnictwo Naukowe, Warsaw, 1961, pp. 303 – 321.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.