×

zbMATH — the first resource for mathematics

Some theorems on the inertia of general matrices. (English) Zbl 0112.01401

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Marden, M., The geometry of zeros, () · Zbl 0118.26101
[2] Lyapunov, A., Problème Général de la stabilité du mouvement, ()
[3] Bellman, R., Introduction to matrix analysis, (1960), McGraw-Hill New York · Zbl 0124.01001
[4] Gantmacher, F.R., ()
[5] Hahn, W., Eine bemerkung zur zweiten methode von Lyapunov, Math. nachrbl., 14, 349-354, (1955) · Zbl 0071.30701
[6] Arrow, K.J.; McManus, M., A note on dynamic stability, Econometrica, 26, 448-454, (1958) · Zbl 0107.37201
[7] Taussky, O., A remark on a theorem by Lyapunov, J. math. anal. and appl., 2, 105-107, (1961) · Zbl 0158.28203
[8] {\scTaussky, O.} A generalization of a theorem by Lyapunov, to be published.
[9] Wielandt, H., On the eigenvalues of A + B and AB, Natl. bur. standards rept., 1367, (1951)
[10] Ostrowski, A., Ueber eigenwerte von produkter hermitescher matrizen, Hamburger math. abhandl., 23, 60-68, (1959) · Zbl 0087.01801
[11] MacDuffee, C.C., The theory of matrices, (1956), Chelsea New York · Zbl 0007.19507
[12] Picone, M., L’automazione del calcolo e il progresso dell’analisi matematica, La ricerca sci., 28, 697-717, (1958)
[13] Ostrowski, A., Solution of equations and systems of equations, (1960), Academic Press New York and London · Zbl 0115.11201
[14] Bellman, R., Kronecker products and the second method of Lyapunov, Math. nachrbl., 20, 17-19, (1959) · Zbl 0087.01504
[15] Lewis, C.L.; Taussky, O., Some remarks concerning the real and imaginary parts of the characteristic roots of a finite matrix, J. math. phys., 1, 234-236, (1960) · Zbl 0093.01604
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.