×

zbMATH — the first resource for mathematics

Elastic materials with couple-stresses. (English) Zbl 0112.16805

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Truesdell, C., & R. Toupin: The Classical Field Theories, Vol. III/1, Handbuch der Physik, Edited by S. Flügge. Berlin-Göttingen-Heidelberg: Springer 1960. · Zbl 0096.00301
[2] Cosserat, E. & Cosserat, F.: Théorie des Corps Déformables. Paris: Hermann 1909. · JFM 40.0862.02
[3] Ericksen, J. L.: Anisotropic fluids. Arch. Rational Mech. Anal. 4, 231-237 (1960). · Zbl 0093.18002 · doi:10.1007/BF00281389
[4] Ericksen, J. L.: Conservation laws for liquid crystals. Trans. Soc. of Rheology 5, 23-24 (1961). · doi:10.1122/1.548883
[5] Ericksen, J. L.: Transversely isotropic fluids. Kolloid-Z. 173, 117-122 (1960). · doi:10.1007/BF01502416
[6] Ericksen, J. L.: Theory of anisotropic fluids. Trans. Soc. of Rheology 4, 29-39 (1960). · Zbl 0093.18002 · doi:10.1122/1.548864
[7] Weyl, H.: The Classical Groups, Their Invariants and Representations. Princeton University Press 1946. · Zbl 1024.20502
[8] Whitney, H.: Geometric Integration Theory. Princeton University Press 1957. · Zbl 0083.28204
[9] Weyl, H.: The Theory of Groups and Quantum Mechanics. New York: Dover 1932. · JFM 58.1000.05
[10] Schouten, J. A.: Der Ricci-Kalkül. Berlin: Springer 1924. · JFM 50.0588.01
[11] Littlewood, D. E.: The Theory of Group Characters and Matrix Representations of Groups. Oxford: The Clarendon Press 1950. · Zbl 0038.16504
[12] Wade, T. L.: Tensor algebra and Young’s symmetry operators. Amer. J. Math. 63, 645-657 (1941). · Zbl 0025.36201 · doi:10.2307/2371380
[13] Toupin, R. A.: The elastic dielectric. J. Ratl. Mech. and Anal. 5, 849-916 (1956). · Zbl 0072.23803
[14] Truesdell, C.: General and exact theory of waves in finite elastic strain. Arch. Rational Mech. Anal. 8, 263-296 (1961). · Zbl 0111.37703 · doi:10.1007/BF00277444
[15] Silin, V. P.: Contribution to the theory of absorption of ultrasound in metals. JETP (U.S.S.R.) 38, 977-983 (1960); 11, 703 of the Amer. Phys. Soc. translations.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.