×

zbMATH — the first resource for mathematics

A contribution to Gödel’s axiomatic set theory. III. (English) Zbl 0113.24501
Keywords:
set theory
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] K. Gödel: The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory. Annals of Mathematics Studies, Princeton 1940, Third Printing 1953.
[2] А. А. Марков: О зависимости аксиомы В6 от других аксиом систнмы Бериайс’а-Гедел’а. ДАН, сер. матем. 12 (1948), 569-570. · Zbl 0036.00703
[3] T. Skolem: Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre. Wissenschaftliche Vorträge geh. a. d. V. Kongress d. Skandinavischer Mathematiker, Helsingfors 1923, 217-232. · JFM 49.0138.02
[4] T. Skolem: Über die Nichtcharacterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich ausschliesslich Zahlenvariablen. Fund. Math. XXII (1934), 150- 161. · Zbl 0010.04902
[5] A. Hajnal L. Kalmár: An Elementary Combinatorial Theorem .. Publ. Math. Debrecen 4 (1956), 434-449. · Zbl 0071.01005
[6] P. Vopěnka: Axiome der Theorie endlicher Mengen. · Zbl 0148.25308
[7] W. Krull: Allgemeine Bewertungstheorie. Crelle J. 767 (1932), 160-196. · Zbl 0004.09802
[8] A. Mostowski: An Undecidable Arithmetical Statement. Fund. Math. XXXIV (1949), 143-164. · Zbl 0039.00802
[9] J. C. Shepherdson: Inner Models for Set Theory I. Jour. Symb. Log. 16 (1951), 161- 190. · Zbl 0043.05302
[10] L. Rieger: A Contribution to Gödel’s Axiomatic Set Theory II. Czech. mat. j. 9 (84) (1959), 1-49. · Zbl 0095.00903
[11] P. Bernays: A System of Axiomatic Set Theory I-VII. Journal of Symb. Log. 2, 6, 7, 8, 13, 79(1937-1954).
[12] B. L. van der Waerden: Moderne Algebra. I. Berlin 1937. · Zbl 0016.33902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.