Tashiro, Yoshihiro On contact structure of hypersurfaces in complex manifolds. I. (English) Zbl 0113.37204 Tohoku Math. J., II. Ser. 15, 62-78 (1963). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 58 Documents Keywords:Riemannian manifolds PDF BibTeX XML Cite \textit{Y. Tashiro}, Tôhoku Math. J. (2) 15, 62--78 (1963; Zbl 0113.37204) Full Text: DOI OpenURL References: [1] W. M. BOOTHBY AND H. C. WANG, On contact manifolds, Ann. of Math., 68(1958), 721-734. JSTOR: · Zbl 0084.39204 [2] A. PROLICHER, Zur Differenlialgeometrie der komplexen Strukturen, Math. Annalen, 129(1955), 50-95. · Zbl 0068.35904 [3] J. W. GRAY, Some global properties of contact structures, Ann. of Math., vol. 69(1959), 421-450. JSTOR: · Zbl 0092.39301 [4] A. LICHNEROWICZ, Espaces homogenes kahleriens, Coll. Int. CNRS. Geometric Differen tielle, Strasbourg, 1953, 171-184. · Zbl 0053.11603 [5] A. NEWLANDER AND L. NIRENBERG, Complex analytic coordinates in almost comple manifolds, Ann. of Math., 65(1957), 391-404. JSTOR: · Zbl 0079.16102 [6] M. OBATA, Affine connections on manifolds with almost complex, quaternion or Hermitia structure, Japan. Journ. Math., 26(1956), 43-77. · Zbl 0089.17203 [7] E. M. PATTERSON, A characterization of Kaehler manifolds in terms of parallel field of planes, Journ. London Math. Soc., 28(1953), 260-269. · Zbl 0051.39502 [8] S. SASAKI, On dfferentiable manifolds with certain structures which are closely relate to almost contact structure, I, Tohoku Math. Journ., (2) 12(1960), 456-476. · Zbl 0192.27903 [9] S. SASAKI AND Y. HATAKEYAMA, On differentiable manifolds with certain structure which are closely related to almost contact structure, II, Tohoku Math. Journ., (2) 13(1961), 281-294. · Zbl 0112.14002 [10] J. A. SCHOUTEN AND K. YANO, On an intrinsic connexion in an Xzn with an almos Hermitian structure, Indag. Math., 17(1955), 1-9. · Zbl 0067.39903 [11] K. YANO AND E. T. DAVIES, Contact tensor calculus, Annali di Mat, 37(1954), 1-36 · Zbl 0056.39904 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.