×

Topology of positively pinched Kaehler manifolds. (English) Zbl 0114.37601


Full Text: DOI

References:

[1] M. Berger, Sur quelques varietes riemanniennes suffisament pincees, Bull. Soc.math. France, 88(1960), 57-71. · Zbl 0096.15503
[2] M. Berger, Les varietes riemanniennes (l/4)-pincees, Annali Scuola Norm. Sup. Pisa, 14(1960), 161-170. · Zbl 0096.15502
[3] M. Berger, Pincement riemannien et pincement holomorphe, ibid., 151-159 · Zbl 0094.34901
[4] M. Berger, Lesspheres parmi les varietes dinstein, C. R. Acad. Sci. Paris, 25 (1962), 1564-1566. · Zbl 0109.40501
[5] S. Bochner, Tensor fields with finite bases, Ann. of Math. 53(1951), 400-411 JSTOR: · Zbl 0045.43102 · doi:10.2307/1969563
[6] M. P. do Carmo, The cohomology ring of certain Kaehlerian manifolds, · Zbl 0132.16703 · doi:10.2307/1970378
[7] S. S. Chern, Characteristic classes of Hermitian manifolds, Ann. of Math., 47(1946), 85-121. JSTOR: · Zbl 0060.41416 · doi:10.2307/1969037
[8] A. Douglis-L. Nirenberg, Interior estimates for elliptic systems of partial differentia equations, Communications pure and appl. Math., 8(1955), 503-538. · Zbl 0066.08002 · doi:10.1002/cpa.3160080406
[9] T. T. Frankel, Manifolds with positive curvature, Pacific J. Math., 11(1961), 165-174 · Zbl 0107.39002 · doi:10.2140/pjm.1961.11.165
[10] W. KONGENBERG, Uber Riemannsche Manngifaltigkeiten mit positiver Krummung, Comm. Math. Helv., 35(1961), 47-54. · Zbl 0133.15005 · doi:10.1007/BF02567004
[11] W. KONGENBERG, On the topology of Riemannian manifolds with restrictions on the conjugat locus,
[12] S. KOBAYASHI, On compact Kaehler manifolds with positive definite Ricci tensor, Ann. of Math., 74(1961), 570-574. JSTOR: · Zbl 0107.16002 · doi:10.2307/1970298
[13] S. B. MYERS, Riemannian manifolds with positive mean curvature, Duke Math. J., 8 (1941), 401-404. Zentralblatt MATH: · Zbl 0025.22704 · doi:10.1215/S0012-7094-41-00832-3
[14] J. L. SYNGE, On the connectivity of spaces of positive curvature, Quart. J. Math., 7(1936), 316-320. Zentralblatt MATH: · Zbl 0015.41601
[15] H. E. RAUCH, Geodesies, symmetric spaces and differential geometry in the large, Comm. Math. Helv. 27(1953), 294-320. · Zbl 0053.43002 · doi:10.1007/BF02564565
[16] Y. TSUKAMOTO, On Riemannian manifolds with positive curvature, Mem. Fac. Sci Kyushu Univ., 15(1961), 90-96. · Zbl 0123.38702 · doi:10.2206/kyushumfs.15.90
[17] K. YANG and S. Bochner, Curvature and Betti nubmers, Ann. of Math. Studies No.32, Princeton 1953. · Zbl 0051.39402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.