Hudson, Sigmund Topological loops with invariant uniformities. (English) Zbl 0115.02501 Trans. Am. Math. Soc. 109, 181-190 (1963). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 10 Documents Keywords:group theory PDF BibTeX XML Cite \textit{S. Hudson}, Trans. Am. Math. Soc. 109, 181--190 (1963; Zbl 0115.02501) Full Text: DOI References: [1] Richard Arens, Topologies for homeomorphism groups, Amer. J. Math. 68 (1946), 593 – 610. · Zbl 0061.24306 [2] Armand Borel, Le plan projectif des octaves et les sphères comme espaces homogènes, C. R. Acad. Sci. Paris 230 (1950), 1378 – 1380 (French). · Zbl 0041.52203 [3] Armand Borel, Topology of Lie groups and characteristic classes, Bull. Amer. Math. Soc. 61 (1955), 397 – 432. · Zbl 0066.02002 [4] Robert Ellis, Locally compact transformation groups, Duke Math. J. 24 (1957), 119 – 125. · Zbl 0079.16602 [5] Andrew M. Gleason and Richard S. Palais, On a class of transformation groups, Amer. J. Math. 79 (1957), 631 – 648. · Zbl 0084.03203 [6] Karl Heinrich Hofmann, Topologische Loops, Math. Z. 70 (1958), 13 – 37 (German). · Zbl 0095.02701 [7] -, Tulane lecture notes, Mimeographed notes printed at Tulane University, 1961. [8] Deane Montgomery and Hans Samelson, Transformation groups of spheres, Ann. of Math. (2) 44 (1943), 454 – 470. · Zbl 0063.04077 [9] Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. · Zbl 0068.01904 [10] Paul S. Mostert, On a compact Lie group acting on a manifold, Ann. of Math. (2) 65 (1957), 447 – 455. · Zbl 0080.16702 [11] Jean Poncet, Groupes de Lie compacts de transformations, C. R. Acad. Sci. Paris 245 (1957), 13 – 15 (French). · Zbl 0079.04302 [12] Kazimierz Urbanik and Fred B. Wright, Absolute-valued algebras, Proc. Amer. Math. Soc. 11 (1960), 861 – 866. · Zbl 0156.03801 [13] Leo Zippin, Two-ended topological groups, Proc. Amer. Math. Soc. 1 (1950), 309 – 315. · Zbl 0045.31203 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.