×

zbMATH — the first resource for mathematics

Über die Darstellung holomorpher Funktionen durch Laplace- und Laplace- Stieltjes-Integrale. (German) Zbl 0115.09802

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bochner, S.: A theorem on Fourier-Stieltjes integrals. Bull. Amer. Math. Soc.40, 271-276 (1934) · JFM 60.0221.03
[2] Butzer, P. L.: Halbgruppen von linearen Operatoren und das Darstellungs- und Umkehrproblem für Laplace-Transformationen. Math. Annalen134, 154-166 (1957). · Zbl 0078.28402
[3] Cooper, J. L. B.: Some problems of approximation theory (in Vorbereitung).
[4] Cramér, H.: On the representation of functions by certain Fourier integrals. Trans. Amer. Math. Soc.46, 190-201 (1939). · JFM 65.0480.04
[5] Doetsch, G.: Bedingungen für die Darstellbarkeit einer Funktion als Laplace-Integral und eine Umkehrformel für die Laplace-Transformation. Math. Z.42, 263-286 (1937). · JFM 63.0379.01
[6] Doetsch, G.: Handbuch der Laplace-Transformation, Bd. I. Basel 1950. · Zbl 0040.05901
[7] Gonzáles Dominguez, A.: The representation of functions by Fourier integrals. Duke Math. J.6, 246-255 (1940). · Zbl 0027.07401
[8] Hille, E. andJ. D. Tamarkin: On moment functions. Proc. Nat. Acad. Sci.19, 902-908 (1933). · Zbl 0008.00903
[9] ??: On the theory of Laplace integrals. Proc. Nat. Acad. Sci.19 908-912 (1933). · Zbl 0008.01103
[10] Offord, A. C.: On Fourier transforms III. Trans. Amer. Math. Soc.38, 250-266 (1935). · Zbl 0013.06004
[11] Rooney, P. G.: On some theorems of Doetsch. Can. J. Math.10, 421-430 (1958). · Zbl 0081.32302
[12] Titchmarsh, E. C.: Introduction to the theory of Fourier integrals, 2nd. ed. Oxford 1948. · Zbl 0031.03202
[13] Widder, D. V.: The Laplace transform. Princeton 1946. · Zbl 0060.24801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.