×

zbMATH — the first resource for mathematics

Boundary theory for recurrent Markov chains. (English) Zbl 0115.13604

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. L. Doob, Discrete potential theory and boundaries, J. Math. Mech. 8 (1959), 433 – 458; erratum 993. · Zbl 0101.11503
[2] William Feller, Boundaries induced by non-negative matrices, Trans. Amer. Math. Soc. 83 (1956), 19 – 54. · Zbl 0071.34901
[3] G. A. Hunt, Markoff chains and Martin boundaries, Illinois J. Math. 4 (1960), 313 – 340. · Zbl 0094.32103
[4] John G. Kemeny and J. Laurie Snell, Potentials for denumerable Markov chains, J. Math. Anal. Appl. 3 (1961), 196 – 260. · Zbl 0105.33103 · doi:10.1016/0022-247X(61)90054-3 · doi.org
[5] John G. Kemeny and J. Laurie Snell, On Markov chain potentials, Ann. Math. Statist 32 (1961), 709 – 715. · Zbl 0105.33102 · doi:10.1214/aoms/1177704966 · doi.org
[6] John G. Kemeny and J. Laurie Snell, Notes on discrete potential theory, J. Math. Anal. Appl. 3 (1961), 117 – 121. · Zbl 0105.33105 · doi:10.1016/0022-247X(61)90010-5 · doi.org
[7] John Lamperti, On null-recurrent Markov chains, Canad. J. Math. 12 (1960), 278 – 288. · Zbl 0133.10901 · doi:10.4153/CJM-1960-023-x · doi.org
[8] Steven Orey, Sums arising in the thoery of Markov chains, Proc. Amer. Math. Soc. 12 (1961), 847 – 856. · Zbl 0109.11704
[9] Frank Spitzer, Hitting probabilities, J. Math. Mech. 11 (1962), 593 – 614. · Zbl 0218.60061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.