×

zbMATH — the first resource for mathematics

Relative limit theorems in analysis. (English) Zbl 0115.26803

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. L. Doob, A relativized Fatou theorem,Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 215–222. · Zbl 0106.07801 · doi:10.1073/pnas.45.2.215
[2] J. L. Doob, A relative limit theorem for parabolic functions. Transactions of the Second Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, Prague 1960, 61–70.
[3] J. L. Doob, J. L. Snell, R. E. Williamson, Application of boundary theory to sums of independent random variables. Contributions to Probability and Statistics, Stanford 1960, 182–197. · Zbl 0094.32202
[4] G. H. Hardy, On the summability of Fourier series,Proc. London Math. Soc. (2) 12 (1913), 365–372. · JFM 44.0302.01 · doi:10.1112/plms/s2-12.1.365
[5] H. Lebesgue, Recherches sur la convergence des séries de Fourier,Math. Ann. 61 (1905), 251–280. · JFM 36.0330.01 · doi:10.1007/BF01457565
[6] Anthony P. Morse, Perfect blankets,Trans. Amer. Math. Soc. 61 (1947), 418–442. · Zbl 0031.38702 · doi:10.1090/S0002-9947-1947-0020618-0
[7] J. L. Snell, R. E. Williamson, A martingale representation theorem,J. Math. Mech. 9 (1960), 653–662. · Zbl 0102.13602
[8] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford 1937. · Zbl 0017.40404
[9] David Vernon Widder, The Laplace transform, Princeton 1941. · Zbl 0063.08245
[10] W. H. Young, The usual convergence of a class of trigonometrical series,Proc. London Math. Soc. (2) 13 (1914), 13–26. · JFM 44.0302.02 · doi:10.1112/plms/s2-13.1.13
[11] W. H. Young, On integrals and derivatives with respect to functions,Proc. London Math. Soc. (2) 15 (1916), 35–63. · JFM 46.0386.01 · doi:10.1112/plms/s2-15.1.35
[12] Antoni Zygmund, Trigonometrical series, Dover Publications 1955.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.