×

zbMATH — the first resource for mathematics

An existence theorem for second order parabolic equations. (English) Zbl 0115.31101

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London, 1953. · Zbl 0053.26802
[2] F. G. Dressel, The fundamental solution of the parabolic equation, Duke Math. J. 7 (1940), 186 – 203. · JFM 66.0462.02
[3] W. Feller, Zur Theorie der stochastischen Prozesse, Math. Ann. vol. 113 (1936) pp. 113-160. · Zbl 0014.22201
[4] Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. · Zbl 0040.16802
[5] Einar Hille, Functional Analysis and Semi-Groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, New York, 1948. · Zbl 0033.06501
[6] Seizô Itô, The fundamental solution of the parabolic equation in a differentiable manifold, Osaka Math. J. 5 (1953), 75 – 92. · Zbl 0052.32703
[7] J. R. Kinney, Continuity properties of sample functions of Markov processes, Trans. Amer. Math. Soc. 74 (1953), 280 – 302. · Zbl 0053.27104
[8] A. Kolmogoroff, Grundbegriffe der Wahrscheinlichskeitrechnung, Ergebnisse der Mathematik, vol. 2, 1933. · Zbl 0007.21601
[9] Daniel Ray, Stationary Markov processes with continuous paths, Trans. Amer. Math. Soc. 82 (1956), 452 – 493. · Zbl 0072.35102
[10] J. Schauder, Über lineare elliptische Differentialgleichungen zweiter Ordnung, Math. Zeit. vol. 38 (1933) p. 257. · Zbl 0008.25502
[11] I. E. Segal, Equivalences of measure spaces, Amer. J. Math. 73 (1951), 275 – 313. · Zbl 0042.35502
[12] D. C. Spencer, Heat conduction on arbitrary Riemannian manifolds, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 327 – 330. · Zbl 0053.06601
[13] Kôsaku Yosida, On the differentiability and the representation of one-parameter semi-group of linear operators, J. Math. Soc. Japan 1 (1948), 15 – 21. · Zbl 0037.35302
[14] Kôsaku Yosida, Integrability of the backward diffusion equation in a compact Riemannian space, Nagoya Math. J. 3 (1951), 1 – 4. · Zbl 0045.08101
[15] Kôsaku Yosida, An ergodic theorem associated with harmonic integrals, Proc. Japan Acad. 27 (1951), 540 – 543. · Zbl 0054.04203
[16] Kôsaku Yosida, On the fundamental solution of the parabolic equation in a Riemannian space, Osaka Math. J. 5 (1953), 65 – 74. · Zbl 0052.32702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.