×

zbMATH — the first resource for mathematics

Function-theoretic characterization of Einstein spaces and harmonic spaces. (English) Zbl 0115.39204

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Leifur Ásgeirsson, Über eine Mittelwertseigenschaft von Lösungen homogener linearer partieller Differentialgleichungen 2. Ordnung mit konstanten Koeffizienten, Math. Ann. 113 (1937), no. 1, 321 – 346 (German). · Zbl 0015.01804
[2] R. Courant and D. Hilbert, Methoden der mathematischen Physik, vol. 2, Berlin, Julius Springer, 1937. · Zbl 0017.39702
[3] G. F. D. Duff, Partial differential equations, Mathematical expositions no. 9, University of Toronto Press, Toronto, 1956. · Zbl 0071.30903
[4] Luther Pfahler Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, N. J., 1949. 2d printing. · Zbl 1141.53002
[5] Avner Friedman, Linear partial differential systems with an additional differential equation at one point, J. Math. Mech. 7 (1958), 173 – 190. · Zbl 0178.45701
[6] SigurÄ’ur Helgason, Differential operators on homogenous spaces, Acta Math. 102 (1959), 239 – 299. · Zbl 0146.43601
[7] A. Lichnerowicz, Equations de Laplace et espaces harmoniques, Premier colloque sur les équations aux dérivées partielles, Louvain, 1953, Georges Thone, Liège; Masson & Cie, Paris, 1954, pp. 9 – 23 (French).
[8] S. Minakshisundaram, Eigenfunctions on Riemannian manifolds, J. Indian Math. Soc. (N.S.) 17 (1953), 159 – 165 (1954). · Zbl 0055.08702
[9] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931 – 954. · Zbl 0096.06902
[10] T. Y. Thomas and E. W. Titt, On the elementary solution of the general linear differential equation of the second order with analytic coefficients, J. Math. Pures Appl. 18 (1939), 217 – 248. · Zbl 0023.03901
[11] O. Veblen, Invariants of quadratic differential forms, Cambridge University Press, 1927. · JFM 53.0681.01
[12] Thomas J. Willmore, Some properties of harmonic Riemannian manifolds, Convegno Internazionale di Geometria Differenziale, Italia, 1953, Edizioni Cremonese, Roma, 1954, pp. 141 – 147.
[13] T. J. Willmore, Mean value theorems in harmonic Riemannian spaces, J. London Math. Soc. 25 (1950), 54 – 57. · Zbl 0036.23403
[14] -, An introduction to differential geometry, Oxford University Press, 1959. · Zbl 0086.14401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.