×

Charakterisierung der elliptischen Differentialoperatoren. (German) Zbl 0116.07403


PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Achieser, N. I., u.I. M. Glasmann: Theorie der linearen Operatoren im Hilbertraum. Berlin: Akademie-Verlag 1954. · Zbl 0056.11101
[2] Bourbaki, N.: Espaces vectoriels topologiques. B.1 (1953), B.2 (1955). Paris: Hermann. · Zbl 0050.10703
[3] Friedrichs, K. O.: Differentiability of solutions of linear elliptic differential equations. Comm. Pure and Appl. Math.6, 299-326 (1953). · Zbl 0051.32703
[4] Gårding, L.: Dirichlet’s problem for linear elliptic partial differential equations. Math. scand.1, 55-72 (1953). · Zbl 0053.39101
[5] Hörmander, L.: On the interior regularity of the solutions of partial differential equations. Comm. Pure and Appl. Math.11, 197-218 (1958). · Zbl 0081.31501
[6] Hörmander, L.: On the theory of general partial differential operators. Acta Math.94, 161-247 (1955). · Zbl 0067.32201
[7] Lax, P.: On the Cauchy problem for hyperbolic equations ... Comm. Pure and Appl. Math. VIII, 615-633 (1955). · Zbl 0067.07502
[8] Malgrange, B.: Existence et aproximation des solutions des équations aux derivées partielles ... (Thèse). Ann. Inst. Fourier6, 271-354 (1955-1956).
[9] Malgrange, B.: Sur une classe d’opérateurs différentiels hypoelliptiques. Bull. Soc. Math. France85, 283-306 (1957). · Zbl 0082.09303
[10] Schwartz, L.: Ecuaciones diferenciales parciales elípticas. Herausgegeben von Universidad Nacional de Colombia. Bogotá 1956.
[11] Schwartz, L.: Théorie des Distributions. B.1 (1957), B.2 (1959). Paris: Hermann.
[12] Weyl, H.: The method of orthogonal projection in potential theory. Duke J.7, 411-444 (1940). · Zbl 0026.02001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.