Brelot’s axiomatic theory of the Dirichlet problem and Hunt’s theory. (English) Zbl 0116.30404

Full Text: DOI Numdam EuDML


[1] H. BAUER, Axiomatische behandlung des dirichletschen problems für elliptische und parabolische differentialgleichungen, Math. Annalen, 146, 1962, 1-59. · Zbl 0107.08003
[2] H. BAUER, Weiterführung einer axiomatische potentialtheorie ohne kern. Z. Wahrscheinlichkeitstheorie, 1, 1963, 197-229. · Zbl 0216.10301
[3] M. BRELOT, Lectures on potential theory. Tata Institute of fundamental research, Bombay, 1960. · Zbl 0098.06903
[4] J. L. DOOB, Probability methods applied to the first boundary value problem, Proceedings of the 3rd Berkeley symposium on mathematical statistics and probability, 3, 1954-1955. · Zbl 0074.09101
[5] Mme R. M. HERVÉ, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel. Ann. Inst. Fourier, Grenoble, 12, 1962, 415-571. · Zbl 0101.08103
[6] G. A. HUNT, Markoff processes and potentials II. Illinois J. Math., t. 1, 1957. · Zbl 0100.13804
[7] G. LION, Théorème de représentation d’un noyau par l’intégrale d’un semi-groupe. Séminaire Brelot-Choquet-Deny (Théorie du Potentiel). 6e année (1961-1962). Fascicule 1. (Institut Henri-Poincaré, Paris). · Zbl 0115.32002
[8] Séminaire Brelot-Choquet-Deny (Théorie du potentiel). 5e année (1960-1961) (Institut Henri-Poincaré, Paris). · Zbl 0100.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.