×

zbMATH — the first resource for mathematics

Spectral localization of operators in Banach spaces. (English) Zbl 0116.32302

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bishop, E.: A duality theorem for an arbitrary operator. Pacific J. Math.9, 379-397 (1959). · Zbl 0086.31702
[2] Dunford, N.: Spectral theory II. Resolutions of the identity. Pacific J. Math.2, 559-614 (1952). · Zbl 0047.35903
[3] ?? Spectral operators. Pacific J. Math.4, 321-354 (1954). · Zbl 0056.34601
[4] ?? A survey of the theory of spectral operators. Bull. Am. Math. Soc.64, 217-274 (1958). · Zbl 0088.32102
[5] ??, andJ. T. Schwartz: Linear operators, Part I. New York: Interscience Pub. Co., 1958. · Zbl 0084.10402
[6] Hille, E., andR. S. Phillips: Functional analysis and semigroups. Am. Math. Soc. Colloq. Pub.31, revised ed., New York, 1957. · Zbl 0078.10004
[7] Leaf, G. K.: A spectral theory for a class of linear operators. Univ. of Illinois dissertation, 1961. See also Pacific J. Math.13, 141-155 (1963). · Zbl 0121.33502
[8] Lorch, E. R.: The integral representation of weakly almost periodic transformations in reflexive vector spaces. Trans. Am. Math. Soc.49, 18-40 (1941). · JFM 67.0415.01
[9] ?? Return to the self-adjoint transformation. Acta Sci. Math. Szeged12B, 137-144 (1950). · Zbl 0035.35902
[10] ?? Spectral theory. New York: Oxford Univ. Press 1962. · Zbl 0105.09204
[11] Nieminen, T.: A condition for the selfadjointness of a linear operator. Ann. Acad. Sci. Fennicae, Ser. A I. Math.1962, 316. · Zbl 0171.34502
[12] Sine, R. C.: Spectral decomposition of operators in Banach spaces. Univ. of Illinois dissertation, 1962.
[13] Wermer, J.: The existence of invariant subspaces. Duke Math. J.19, 615-622 (1952). · Zbl 0047.35806
[14] Wolf, F.: Operators in Banach space which admit a generalized spectral decomposition. Nederl. Akad. Wetensch. Indag. Math.19, 302-311 (1957). · Zbl 0077.31701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.