×

Eine neue Methode zur Approximation periodischer Lösungen nicht- linearer Differentialgleichungen zweiter Ordnung. (German) Zbl 0117.05404


PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Barb?lat, I.: Applications du principe topologique deT. Wa?ewski aux équations différentielles du second ordre. Ann. Polon. Math.5, 303-317 (1958). · Zbl 0084.28902
[2] Cesari, L.: Functional Analysis and Periodic Solutions of Nonlinear Differential Equations. Contributions to Differential Equations, vol.I Nr. 2, 149-187 (1963). · Zbl 0132.07101
[3] Gomory, R. E.: Critical Points at Infinity and Forced Oscillations, Contributions to the Theory of Nonlinear Oscillations, vol. III. Annals of Mathematics Studies36, 85-126 (1956). · Zbl 0071.08801
[4] Hale, Jack K.: Oscillations in Nonlinear Systems. McGraw-Hill Series in Advanced Mathematics with Applications. New York-Toronto-London: McGraw-Hill Book Company, Inc. 1963.
[5] Knobloch, H. W.: Zwei Kriterien für die Existenz periodischer Lösungen von Differentialgleichungen zweiter Ordnung. Archiv der Mathematik14, 182-185 (1963). · Zbl 0123.05802
[6] Knobloch, H. W.: Remarks on a Paper ofL. Cesari on Functional Analysis and Nonlinear Differential Equations. (Erscheint demnächst im Michigan Mathematical Journal.) · Zbl 0117.30101
[7] Levinson, N.: Transformation theory of non-linear differential-equations of the second order. Annals of Mathematics45, 723-737 (1944). · Zbl 0061.18910
[8] Massera, J. L.: The existence of periodic solutions of differential equations. Duke Mat. J.17, 457-475 (1950). · Zbl 0038.25002
[9] Miranda, C.: Un’osservazione su un teorema di Brouwer. Boll. Un. Mat. Ital. (2)3, 5-7 (1940).
[10] Wa?ewski, T.: Sur un principe topologique de l’examen de l’allure asymptotique des intégrales des équations différentielles ordinaires. Ann. Soc. Polon. Math.20, 279-313 (1948). · Zbl 0032.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.