Nehari, Zeev Bounds for the solutions of a class of nonlinear partial differential equations. (English) Zbl 0117.07401 Proc. Am. Math. Soc. 14, 829-836 (1963). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 Documents Keywords:partial differential equations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] E. K. Haviland, A note on unrestricted solutions of the differential equation \Delta \?=\?(\?), J. London Math. Soc. 26 (1951), 210 – 214. · Zbl 0043.10203 · doi:10.1112/jlms/s1-26.3.210 [2] E. Hopf, On non-linear partial differential equations, Berkeley Symposium on Partial Differential Equations (Lecture Series), University of Kansas, 1957, pp. 1-31. [3] J. B. Keller, On solutions of \Delta \?=\?(\?), Comm. Pure Appl. Math. 10 (1957), 503 – 510. · Zbl 0090.31801 · doi:10.1002/cpa.3160100402 [4] Zeev Nehari, On a nonlinear differential equation arising in nuclear physics, Proc. Roy. Irish Acad. Sect. A 62 (1963), 117 – 135 (1963). · Zbl 0124.30204 [5] Robert Osserman, On the inequality \Delta \?\ge \?(\?), Pacific J. Math. 7 (1957), 1641 – 1647. · Zbl 0083.09402 [6] J. L. Synge, On a certain non-linear differential equation, Proc. Roy. Irish Acad. Sect. A 62 (1961/1962), 17 – 41. · Zbl 0104.31501 [7] Wolfgang Walter, Über ganze Lösungen der Differentialgleichung \Delta \?=\?(\?), Jber. Deutsch. Math. Verein. 57 (1955), 94 – 102 (German). · Zbl 0066.34402 [8] H. Wittich, Ganze Lösungen der Differentialgleichung \Delta \?=\?^{\?}, Math. Z. 49 (1944), 579 – 582 (German). · Zbl 0028.41001 · doi:10.1007/BF01174219 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.