×

Weak compactness, pseudo-reflexivity and quasi-reflexivity. (English) Zbl 0117.08301


MSC:

46A50 Compactness in topological linear spaces; angelic spaces, etc.
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Banach, S.: Théorie des opérations linéaires. Warszawa 1932.
[2] Civin, P., andB. Yood: Quasi-reflexive spaces. Proc. Am. Math. Soc.8, 906-911 (1957). · Zbl 0080.31204
[3] Dunford, N., andJ. Schwartz: Linear operators. Part I: General theory. Interscience Publishers 1958. · Zbl 0084.10402
[4] Eberlein, W. F.: Weak compactness in Banach spaces. I. Proc. Nat. Acad. Sci. U.S.A.33, 51-53 (1947). · Zbl 0029.26902
[5] Grothendieck, A.: Critères de compacité dans les espaces fonctionnels généraux. Am. J. Math.74, 168-186 (1952). · Zbl 0046.11702
[6] James, R. C.: Reflexivity and the supremum of linear functionals. Ann. Math.66, 159-169 (1957). · Zbl 0079.12704
[7] Klee, V.: Some characterizations of reflexivity. Rev. Ci. Lima52, 15-23 (1950). · Zbl 0040.35403
[8] Köthe, G.: Topologische lineare Räume. I. Berlin-Göttingen-Heidelberg: Springer-Verlag 1960.
[9] Pták, V.: On a theorem ofW. F. Eberlein. Studia Math.14, 276-284 (1954). · Zbl 0065.09603
[10] Singer, I.: On Banach spaces reflexive with respect to a linear subspace of their conjugate space. Bull. Math. Soc. Sci. Math. Phys. R. P. R.2, 449-462 (1958). · Zbl 0098.08001
[11] ?? On Banach spaces reflexive with respect to a linear subspace of their conjugate space. II. Math. Ann.145, 64-76 (1962). · Zbl 0101.32801
[12] ?? On Banach spaces reflexive with respect to a linear subspace of their conjugate space. III. Rev. math. pures et appl.8, 139-150 (1963). · Zbl 0143.35004
[13] ?? Bases and quasi-reflexivity of Banach spaces. Math. Ann.153, 199-209 (1964). · Zbl 0116.31502
[14] ?mulian, V.: On the principle of inclusion in the space of type (B). Mat. Sbornik, N.S.5, 317-328 (1939) [Russian]. · JFM 65.1312.02
[15] ?? Über lineare topologische Räume. Mat. Sbornik, N.S.7, 425-448 (1940). · JFM 66.0526.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.