×

Products of normal spaces with metric spaces. (English) Zbl 0117.39803


MSC:

54-XX General topology

Keywords:

topology
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Dowker, C. H.: On countably paracompact spaces. Canad. J. Math.1, 219-224 (1951). · Zbl 0042.41007
[2] Frolik, Z.: On the topological product of paracompact spaces. Bull. acad. polon. sci.8, 747-750 (1960).
[3] Michael, E.: A note on paracompact spaces. Proc. Am. Math. Soc.4, 831-838 (1953). · Zbl 0052.18701
[4] – The product of a normal space and a metric space need not be normal. To appear. · Zbl 0114.38904
[5] Morita, K.: Normal families and dimension theory for metric spaces. Math. Ann.128, 350-362 (1954). · Zbl 0057.39001
[6] ?? A condition for metrizability of topological spaces and forn-dimensionality. Sci. Reports Tokyo Kyoiku Daigaku, Sect. A,5, 33-36 (1955). · Zbl 0065.38101
[7] ?? Paracompactness and product spaces. Fundamenta Math.50, 223-236 (1962). · Zbl 0099.17401
[8] ?? Note on paracompactness. Proc. Japan Acad.37, 1-3 (1961). · Zbl 0099.17402
[9] ?? On the product of a normal space with a metric space. Proc. Japan Acad.39, 148-150 (1963). · Zbl 0178.25801
[10] ??, andS. Hanai: Closed mappings and metric spaces. Proc. Japan Acad.32, 10-14 (1956). · Zbl 0073.17803
[11] Stone, A. H.: Paracompactness and product spaces. Bull. Am. Math. Soc.54, 977-982 (1948). · Zbl 0032.31403
[12] ?? Metrizability of decomposition spaces. Proc. Am. Math. Soc.7, 690-700 (1956). · Zbl 0071.16001
[13] Tamano, H.: On compactifications. J. Math. Kyoto Univ.1, 162-193 (1962). · Zbl 0106.15601
[14] Tukey, J. W.: Convergence and uniformity in topology. Princeton 1941. · Zbl 0063.07875
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.