×

Geometric aspects of potential theory in symmetric spaces. III. (English) Zbl 0119.09001


PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Borel, A.: Kählerian coset spaces of semi-simple Lie groups. Proc. Nat. Acad. Sci. U.S.40, 1147-1151 (1954). · Zbl 0058.16002
[2] Fröhlicher, A.: Differentialgeometrie der komplexen Strukturen. Math. Ann.129, 50-95 (1955). · Zbl 0068.35904
[3] Goto, M.: On algebraic homogeneous spaces. Am. J. Math.76, 811-818 (1954). · Zbl 0056.39803
[4] Harish-Chandra: On a lemma of Bruhat. J. math. pures appl.35, 203-210 (1956). · Zbl 0070.26004
[5] ?? Representations of semi-simple Lie groups. V. Am. J. Math.78, 1-41 (1956). · Zbl 0070.11602
[6] Helgason, S.: Differential geometry and symmetric spaces. New York: Academic Press 1962. · Zbl 0111.18101
[7] Hermann, R.: Geodesics of bounded symmetric domains. Comment. Math. Helv.35, 1-8 (1961). · Zbl 0107.39102
[8] ?? A Poisson kernel for homogeneous spaces. Proc. Am. Math. Soc.12, 892-899 (1961). · Zbl 0123.08002
[9] ?? Totally geodesic orbits of groups of transformations. Proc. Ned. Akad. Wet.65, 291-298 (1962). · Zbl 0124.14502
[10] ?? Geometric aspects of potential theory in bounded symmetric domains. I. Math. Ann.148, 349-366 (1962). · Zbl 0108.28603
[11] ?? Geometric aspects of potential theory in bounded symmetric domains. II. Math. Ann.151, 143-149 (1963). · Zbl 0113.31003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.