Thomas, E. Homotopy classification of maps by cohomology homomorphisms. (English) Zbl 0119.18401 Trans. Am. Math. Soc. 111, 138-151 (1964). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 6 Documents Keywords:topology × Cite Format Result Cite Review PDF Full Text: DOI References: [1] J. Adem, The relations on Steenrod powers of cohomology classes, Algebraic Topology and Geometry (a symposium in honor of S. Lefschetz), Princeton, N. J., 1956. [2] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 7 – 38. · Zbl 0108.17705 [3] Raoul Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313 – 337. · Zbl 0129.15601 · doi:10.2307/1970106 [4] Raoul Bott, The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35 – 61. · Zbl 0096.17701 [5] William Browder, The cohomology of covering spaces of \?-spaces, Bull. Amer. Math. Soc. 65 (1959), 140 – 141. · Zbl 0088.38802 [6] Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, New Jersey, 1952. · Zbl 0047.41402 [7] Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. · Zbl 0088.38803 [8] Kôichi Iwata, Note on Postnikov invariants of a loop space, Tôhoku Math. J. (2) 8 (1956), 329 – 332. · Zbl 0073.18302 · doi:10.2748/tmj/1178244957 [9] I. M. James, On \?-spaces and their homotopy groups, Quart. J. Math. Oxford Ser. (2) 11 (1960), 161 – 179. · Zbl 0097.16102 · doi:10.1093/qmath/11.1.161 [10] John Milnor, On spaces having the homotopy type of a \?\?-complex, Trans. Amer. Math. Soc. 90 (1959), 272 – 280. · Zbl 0084.39002 [11] John Milnor, Some consequences of a theorem of Bott, Ann. of Math. (2) 68 (1958), 444 – 449. · Zbl 0085.17301 · doi:10.2307/1970255 [12] Katuhiko Mizuno, A proof for a theorem of M. Nakaoka, Proc. Japan Acad. 30 (1954), 431 – 434. · Zbl 0058.17102 [13] John C. Moore, Semi-simplicial complexes and Postnikov systems, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 232 – 247. · Zbl 0089.18001 [14] Franklin P. Peterson, Some remarks on Chern classes, Ann. of Math. (2) 69 (1959), 414 – 420. · Zbl 0123.16502 · doi:10.2307/1970191 [15] Franklin P. Peterson, Functional cohomology operations, Trans. Amer. Math. Soc. 86 (1957), 197 – 211. · Zbl 0212.55902 [16] Franklin P. Peterson and Emery Thomas, A note on non-stable cohomology operations, Bol. Soc. Mat. Mexicana (2) 3 (1958), 13 – 18. · Zbl 0121.39604 [17] Jean-Pierre Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951), 425 – 505 (French). · Zbl 0045.26003 · doi:10.2307/1969485 [18] Jean-Pierre Serre, Cohomologie modulo 2 des complexes d’Eilenberg-MacLane, Comment. Math. Helv. 27 (1953), 198 – 232 (French). · Zbl 0052.19501 · doi:10.1007/BF02564562 [19] E. Spanier, Secondary operations on mappings and cohomology, Ann. of Math. (2) 75 (1962), 260 – 282. · Zbl 0105.17003 · doi:10.2307/1970174 [20] N. E. Steenrod, Cohomology operations, Lectures by N. E. STeenrod written and revised by D. B. A. Epstein. Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J., 1962. · Zbl 0102.38104 [21] Emery Thomas, On the cohomology groups of the classifying space for the stable spinor groups, Bol. Soc. Mat. Mexicana (2) 7 (1962), 57 – 69. · Zbl 0124.16401 [22] -, A spectral sequence for K-theory, Lecture notes in seminar of R. Bott, Harvard Univ., Cambridge, Mass., 1962. [23] Wen-tsün Wu, Les \?-carrés dans une variété grassmannienne, C. R. Acad. Sci. Paris 230 (1950), 918 – 920 (French). · Zbl 0035.24904 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.