×

zbMATH — the first resource for mathematics

Micro-structure in linear elasticity. (English) Zbl 0119.40302

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ericksen, J. L., & C. Truesdell, Exact theory of stress and strain in rods and shells. Arch. Rational Mech. Anal. 1, 295–323 (1958). · Zbl 0081.39303 · doi:10.1007/BF00298012
[2] Cosserat, E. Cosserat F., Théorie des Corps Déformables. Paris: A. Hermann & Fils 1909. For the linear, two-dimensional theory, with applications, see H. Schaefer, Versuch einer Elastizitätstheorie des Zweidimensionalen ebenen Cosserat-Kontinuums. Miszellaneen der Angewandten Mechanik, pp. 277–292. Berlin: Akademie-Verlag 1962.
[3] Jeffreys, H., & Jeffreys B. S., Methods of Mathematical Physics, Second Edition. Cambridge: University Press 1950. · Zbl 0037.31704
[4] Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, Fourth Edition. Cambridge: University Press 1927.
[5] Grioli, G., Elasticità asimmetrica. Ann. di Mat. pura ed appl., Ser. IV 50, 389–417 (1960). · Zbl 0123.40504 · doi:10.1007/BF02414525
[6] Aero, E. L., & E. V. Kuvshinskii, Fundamental equations of the theory of elastic media with rotationally interacting particles. Fizika Tverdogo Tela 2, 1399–1409 (1960); Translation: Soviet Physics Solid State 2, 1272–1281 (1961).
[7] Rajagopal, E. S., The existence of interfacial couples in infinitesimal elasticity. Ann. der Physik 6, 192–201 (1960). · Zbl 0094.44904 · doi:10.1002/andp.19604610312
[8] Toupin, R. A., Elastic materials with couple-stresses. Arch. Rational Mech. Anal. 11, 385–414 (1962). · Zbl 0112.16805 · doi:10.1007/BF00253945
[9] Mindlin, R. D., & H. F. Tiersten, Effects of couple-stresses in linear elasticity. Arch. Rational Mech. Anal. 11, 415–448 (1962). · Zbl 0112.38906 · doi:10.1007/BF00253946
[10] Mindlin, R. D., Influence of couple-stresses on stress-concentrations. Experimental Mechanics 3, 1–7 (1963). · doi:10.1007/BF02327219
[11] Mindlin, R. D., & M. A. Medick, Extensional vibrations of elastic plates. J. Appl. Mech. 26, 561–569 (1959).
[12] Gazis, D. C., & R. F. Wallis, Extensional waves in cubic crystal plates. Proc. 4th U.S.Nat. Cong. Appl. Mech., 161–168 (1962).
[13] Mindlin, R. D., High frequency vibrations of plated, crystal plates. Progress in Applied Mechanics, pp. 73–84. New York: Macmillan Co. 1963.
[14] Gazis, D. C., & R. F. Wallis, Surface vibrational modes in crystal lattices with complex interatomic interactions. J. Math. Phys. 3, 190–199 (1962). · Zbl 0100.43401 · doi:10.1063/1.1703778
[15] Brockhouse, B. N., & P. K. Iyengar, Normal modes of germanium by neutron spectroscopy. Phys. Rev. 111, 747–754 (1958). · doi:10.1103/PhysRev.111.747
[16] Mindlin, R. D., Thickness-shear and flexural vibrations of crystal plates. J. Appl. Phys. 22, 316–323 (1951). · Zbl 0042.18603 · doi:10.1063/1.1699948
[17] Mindlin, R. D., High frequency vibrations of crystal plates. Q. Appl. Math. 19, 51–61 (1961). · Zbl 0109.17707 · doi:10.1090/qam/99967
[18] Kane, T. R., & R. D. Mindlin, High frequency extensional vibrations of plates. J. Appl. Mech. 23, 277–283 (1956). · Zbl 0070.19301
[19] Mindlin, R. D., Influence of rotatory inertia and shear on flexural vibrations of isotropic, elastic plates. J. Appl. Mech. 18, 31–38 (1951). · Zbl 0044.40101
[20] Jaramillo, T. J., A generalization of the energy function of elasticity theory. Dissertation, Department of Mathematics, University of Chicago, 1929.
[21] Mindlin, R. D., Force at a point in the interior of a semi-infinite solid. Proc. First Midwestern Conf. on Solid Mech., Urbana, Illinois, 56–59 (1953).
[22] Papkovitch, P. F., The representation of the general integral of the fundamental equations of elasticity theory in terms of harmonic functions. Izv. Akad. Nauk SSSR, Phys.-Math. Ser. 10, 1425 (1932).
[23] Mindlin, R. D., Note on the Galerkin and Papkovitch stress functions. Bull. Amer. Math. Soc. 42, 373–376 (1936). · JFM 62.0939.02 · doi:10.1090/S0002-9904-1936-06304-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.