Doob, Joseph L. Boundary properties of functions with finite Dirichlet integrals. (English) Zbl 0121.08604 Ann. Inst. Fourier 12, 573-621 (1962). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 37 Documents Keywords:partial differential equations PDF BibTeX XML Cite \textit{J. L. Doob}, Ann. Inst. Fourier 12, 573--621 (1962; Zbl 0121.08604) Full Text: DOI Numdam EuDML OpenURL References: [1] Lars V. AHLFORS et H. L. ROYDEN, A counterexample in the classification of open Riemann surfaces. Ann. Acad. Sci. Fennicae. Sr. A. I., Math. Phys., n° 120 (1952). · Zbl 0048.05905 [2] N. ARONSZAJN, Boundary values of functions with finite Dirichlet integral. (Conference on partial differential equations, U. of Kansas (1954). Studies in eigenvalue problems. Technical report, 14. · Zbl 0068.08201 [3] M. BRELOT, Étude et extensions du principe de Dirichlet. Annales Inst. Fourier, 5 (1953-1954), 371-419. · Zbl 0067.33002 [4] M. BRELOT, et G. CHOQUET, Espaces et lignes de Green. Annales Inst. Fourier, 3 (1951), 119-263. · Zbl 0046.32701 [5] J. DENY, LES potentiels d’énergie finie. Acta math., 82 (1950), 107-183. · Zbl 0034.36201 [6] J. DENY et J. L. LIONS, LES espaces du type de beppo Levi. Annales Inst. Fourier, 5 (1953-1954), 305-370. · Zbl 0065.09903 [7] J. L. DOOB, Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France, 85 (1957), 431-458. · Zbl 0097.34004 [8] J. L. DOOB, A non-probabilistic proof of the relative Fatou theorem. Annales Inst. Fourier, 9 (1959), 293-300. · Zbl 0095.08203 [9] J. DOUGLAS, Solution of the problem of plateau. Trans. Amer. Math. Soc., 33 (1931), 263-321. · JFM 57.1542.03 [10] M. GODEFROID, Une propriété des fonctions B.L.D. dans un espace de Green. Annales Inst. Fourier, 9 (1959), 301-304. · Zbl 0095.08204 [11] Linda NAÏM, Sur le rôle de la frontière de R. S. martin dans la théorie du potentiel. Annales Inst. Fourier, 7 (1957), 183-281. · Zbl 0086.30603 [12] Jan ODHNOFF. Operators generated by differential problems with eigenvalue parameter in equation and boundary condition. Medd. Lunds Univ. Mat. Sem. 14 (1959). · Zbl 0138.36103 [13] Howard OSBORN, The Dirichlet functional. 1. J. Math. Analysis and Applications, 1 (1960), 61-112. · Zbl 0099.08103 [14] S. L. SOBOLEV, Some applications of functional analysis in mathematical physics (Russian), Leningrad, 1950. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.