×

First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. (English) Zbl 0121.13003


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] R. Courant and D. Hilbert, Methoden der Mathematischen Physik, Vols. 1, 2, Springer, Berlin, 1937. · Zbl 0017.39702
[2] D. A. Darling and M. Kac, On occupation times for Markoff processes, Trans. Amer. Math. Soc. 84 (1957), 444 – 458. · Zbl 0078.32005
[3] J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London, 1953. · Zbl 0053.26802
[4] A. Dvoretzky and P. Erdös, Some problems on random walk in space, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950., University of California Press, Berkeley and Los Angeles, 1951, pp. 353 – 367.
[5] Paul Erdös, On the law of the iterated logarithm, Ann. of Math. (2) 43 (1942), 419 – 436. · Zbl 0063.01264
[6] P. Erdős and S. J. Taylor, Some problems concerning the structure of random walk paths, Acta Math. Acad. Sci. Hungar. 11 (1960), 137 – 162. (unbound insert) (English, with Russian summary). · Zbl 0091.13303
[7] P. Erdős and S. J. Taylor, On the Hausdorff measure of Brownian paths in the plane, Proc. Cambridge Philos. Soc. 57 (1961), 209 – 222. · Zbl 0101.11204
[8] F. Hausdorff, Dimension und äusseres Mass, Math. Ann. 79 (1919), 157-179.
[9] I. I. Hirschman and D. V. Widder, The convolution transform, Princeton University Press, Princeton, N. J., 1955. · Zbl 0039.33202
[10] M. Kac, On some connections between probability theory and differential and integral equations, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley and Los Angeles, 1951, pp. 189 – 215.
[11] J. Kiefer, \?-sample analogues of the Kolmogorov-Smirnov and Cramér-V. Mises tests, Ann. Math. Statist. 30 (1959), 420 – 447. · Zbl 0134.36707
[12] Paul Lévy, La mesure de Hausdorff de la courbe du mouvement brownien, Giorn. Ist. Ital. Attuari 16 (1953), 1 – 37 (1954) (French). · Zbl 0053.10101
[13] C. A. Rogers and S. J. Taylor, The analysis of additive set functions in Euclidean space, Acta Math. 101 (1959), 273 – 302. · Zbl 0090.26602
[14] C. A. Rogers and S. J. Taylor, Functions continuous and singular with respect to a Hausdorff measure., Mathematika 8 (1961), 1 – 31. · Zbl 0145.28701
[15] M. Rosenblatt, On a class of Markov processes, Trans. Amer. Math. Soc. 71 (1951), 120 – 135. · Zbl 0045.07703
[16] S. J. Taylor, The Hausdorff \?-dimensional measure of Brownian paths in \?-space, Proc. Cambridge Philos. Soc. 49 (1953), 31 – 39. · Zbl 0050.05803
[17] S. J. Taylor, On the connexion between Hausdorff measures and generalized capacity., Proc. Cambridge Philos. Soc. 57 (1961), 524 – 531. · Zbl 0106.26802
[18] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. · Zbl 0063.08184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.