×

zbMATH — the first resource for mathematics

Cevian simplexes. (English) Zbl 0121.15601

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. F. Baker, Principles of geometry, vol. 2, Cambridge, University Press, 1930.
[2] -, Principles of geometry, vol. 4, Cambridge, University Press, 1940.
[3] N. A. Court, Sur quatre sphères tangents deux à deux, Mathesis vol. 42 (1933) pp. 227-228, 350-352. · JFM 59.1274.03
[4] -, Modern pure solid geometry, New York, Macmillan & Co., 1935. · JFM 61.1383.03
[5] N. A. Court, On the Cevian Tetrahedron, Amer. Math. Monthly 43 (1936), no. 2, 89 – 91. · JFM 62.0710.04
[6] N. A. Court, Skewly Cevian tetrahedrons, Duke Math. J. 15 (1948), 49 – 54. · Zbl 0030.06401
[7] -, College geometry, New York, Barnes & Noble, 1952.
[8] Nathan Altshiller Court, Sur les tétraèdres circonscrits par les arêtes à une quadrique, Mathesis 63 (1954), 12 – 18 (French). · Zbl 0055.14202
[9] -, The cevian chain, Scripta Math. vol. 22 (1956) pp. 193-202. · Zbl 0077.34001
[10] Nathan Altshiller Court, Sur la transformation isotomique, Mathesis 66 (1957), 291 – 297 (French). · Zbl 0079.14205
[11] H. S. M. Coxeter, The real projective plane, Cambridge, at the University Press, 1955. 2d ed. · Zbl 0065.36401
[12] Asghar Hameed, A quadric associated with two points, Pakistan J. Sci. Res. 3 (1951), 48 – 51.
[13] Sahib Ram Mandan, Director hypersphere, Math. Student 30 (1962), 13 – 17. · Zbl 0106.35204
[14] Sahib Ram Mandan, An \?-configuration in Euclidean and elliptic \?-space, Canad. J. Math. 10 (1958), 489 – 501. · Zbl 0085.36002
[15] Sahib Ram Mandan, Harmonic inversion, Math. Mag. 33 (1959/1960), 71 – 78. · Zbl 0089.16709
[16] Sahib Ram Mandan, Medial simplex, Math. Student 28 (1962), 49 – 52. · Zbl 0208.48002
[17] -, Polarity for a quadric in an \( n\)-space, J. Fac. Sci. Uni. Istanbul (to appear). · Zbl 0099.36801
[18] -, Altitudes of a simplex in an \( n\)-space, J. Australian Math. Soc. (to appear). · Zbl 0121.15901
[19] -, On \( n + 1\) intersecting hyperspheres in an \( n\)-space, J. Australian Math. Soc. (to appear). · Zbl 0151.26502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.