A theorem on lattice ordered groups and its applications to the valuation theory. (English) Zbl 0121.27102


group theory
Full Text: DOI EuDML


[1] Birkhoff, G.: Lattice Theory. Rev. ed. Am. Math. Soc. Coll. Publ., Vol. XXV. New York 1948. · Zbl 0033.10103
[2] Jaffard, P.: Solution d’un problème de Krull. Bull. Sc. Math., 2 e série,85, 127-135 (1961). · Zbl 0112.26702
[3] Krull, W.: Zur Theorie der Bewertungen mit nichtarchimedisch geordneter Wertgruppe und der nichtarchimedisch geordneten Körper. Colloque d’Algèbre Supérieure, Bruxelles 1956, 45-77.
[4] Lorenzen, P.: Über halbgeordnete Gruppen. Math. Z.52, 483-526 (1949/50). · Zbl 0035.29303
[5] Müller, D.: Verbandsgruppen und Durchschnitte endlich vieler Bewertungsringe. Math. Z.77, 45-62 (1961). · Zbl 0107.03101
[6] Nakano, T.: A generalized valuation and its value groups. To appear in Comm. Math. Univ. St. Pauli. · Zbl 0178.37101
[7] Ribenboim, P.: Le théorème d’approximation pour les valuations de Krull. Math. Z.68, 1-18 (1957). · Zbl 0102.03002
[8] Schilling, O. F. G.: The theory of Valuations. Math. Surveys Nr. IV, New York 1950. · Zbl 0037.30702
[9] Yakabe, I.: On semi-valuations II. Memoirs of Fac. Sci. Kyûshû Univ.17, 10-28 (1963). · Zbl 0168.40204
[10] Yakabe, I.: Equivalence of the Krull-Müller-Jaffard theorem and Ribenboim’s approximation theorem. (To appear.) · Zbl 0161.04201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.