×

Holomorphic vector bundles on a compact Riemann surface. (English) Zbl 0122.16701


MSC:

53Cxx Global differential geometry
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Cartan, H., andS. Eilenberg: Homological Algebra. Princeton: University Press 1956. · Zbl 0075.24305
[2] Hirzebruch, F.: Neue topologische Methoden in der algebraischen Geometrie. Berlin- Göttingen - Heidelberg: Springer 1956. · Zbl 0074.36701
[3] Igusa, J.: On a property of commutators in the unitary group. Mem. Coll. Sci. Univ. Kyoto, Ser. A Math.26, 45-49 (1950). · Zbl 0045.15803
[4] Kodaira, K., andD. C. Spencer: On deformations of complex analytic structures. I. Ann. Math.67, 328-401 (1958). · Zbl 0128.16901
[5] ?? ??: Existence of complex structure on a differentiable family of deformations of compact complex manifolds. Ann. Math.70, 145-166 (1959). · Zbl 0124.16503
[6] Nakano, S.: Parametrization of a family of bundles. Mem. Coll. Sci. Univ. Kyoto, Ser. A Math.33, 353-366 (1961). · Zbl 0195.53202
[7] Northcott, D. G.: An introduction to homological algebra. Cambridge: University Press 1960. · Zbl 0116.01401
[8] Schwartz, L.: Lectures on complex analytic manifolds. Tata Institute of Fundamental Research. Bombay 1955.
[9] Seshadri, C. S.: Generalized multiplicative meromorphic functions on a complex analytic manifold. J. Ind. Math. Soc.21, 149-178 (1957). · Zbl 0096.06401
[10] Weil, A.: Généralisation des fonctions abéliennes. J. math. pures appl.17, 47-87 (1938).
[11] ?? Introduction à l’étude des variétés kählériennes. Paris: Hermann 1958.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.