Barraud, Jean-Francois Symplectic spheres with positive ordinary double points and algebraic curves in \(\mathbb{C}\mathbb{P}^2\). (Sphères symplectiques à points doubles ordinaires positifs et courbes algébriques dans \(\mathbb{C}\mathbb{P}^2\).) (French) Zbl 1007.58007 C. R. Acad. Sci., Paris, Sér. I, Math. 327, No. 7, 661-664 (1998). Summary: We prove that every symplectic sphere having only positive ordinary double points as singularities, is symplectically isotopic to an algebraic curve. In the same way, any generic set of imbedded symplectic spheres of degree 1 which are positively transverse to one another is symplectically isotopic to a set of complex lines. Cited in 1 Document MSC: 58D10 Spaces of embeddings and immersions 53D05 Symplectic manifolds, general PDF BibTeX XML Cite \textit{J.-F. Barraud}, C. R. Acad. Sci., Paris, Sér. I, Math. 327, No. 7, 661--664 (1998; Zbl 1007.58007) Full Text: DOI