×

zbMATH — the first resource for mathematics

Symplectic spheres with positive ordinary double points and algebraic curves in \(\mathbb{C}\mathbb{P}^2\). (Sphères symplectiques à points doubles ordinaires positifs et courbes algébriques dans \(\mathbb{C}\mathbb{P}^2\).) (French) Zbl 1007.58007
Summary: We prove that every symplectic sphere having only positive ordinary double points as singularities, is symplectically isotopic to an algebraic curve. In the same way, any generic set of imbedded symplectic spheres of degree 1 which are positively transverse to one another is symplectically isotopic to a set of complex lines.

MSC:
58D10 Spaces of embeddings and immersions
53D05 Symplectic manifolds, general
PDF BibTeX XML Cite
Full Text: DOI