The conjugate gradient method. (English) Zbl 0123.11201

Full Text: DOI EuDML


[1] Hesteness, M. R., andE. Stiefel: Methods of Conjugate Gradients for Solving Linear Systems, NBS. J. of Res.49, 409-436 (1952). · Zbl 0048.09901
[2] Stiefel, E.: Einige Methoden der Relaxationsrechnung. ZAMP3, 1-33 (1952). · Zbl 0046.34104 · doi:10.1007/BF02080981
[3] ?: Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme. Comm. Math. Helv.29, 157-179 (1955). · Zbl 0066.36703 · doi:10.1007/BF02564277
[4] ?: Kernel Polynomials in Linear Algebra and their Numerical Applications, NBS. Appl. Math. Series49, 1-22 (1958).
[5] Engeli, M., Th. Ginsburg, H. Rutishauser andE. Stiefel: Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-adjoint Boundary Value Problems. Mitt. Inst. angew. Math. ETH Zürich, No. 8 (Basel: Birkhäuser 1959). · Zbl 0089.12103
[6] Backus, J. W., F. L. Bauer et al.: Revised Report on the Algorithmic LanguageAlgol 60. Numer. Math.4, 420-453 (1963). · Zbl 0109.35105 · doi:10.1007/BF01386340
[7] Schwarz, H. R.: Introduction toAlgol. Comm. of the ACM5, 82-95 (1962). · Zbl 0101.10407 · doi:10.1145/366792.366804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.