×

Some theorems on time change and killing of Markov processes. (English) Zbl 0123.35202


MSC:

60J05 Discrete-time Markov processes on general state spaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOOB, J. L., A probability approach to the heat equation. Trans. Amer. Math. Soc. 80 (1955), 216-280. · Zbl 0068.32705
[2] DYNKIN, E. B., Foundations of the theory of Markov processes. Moscow (1959 (Russian), English translation, Pergamon (1960). · Zbl 0201.50301
[3] DYNKIN, E. B., The intrinsic topology and excessive functions determined by Marko processes. Dokl. Akad. Nauk SSSR. 127 (1959), 17-19 (Russian) · Zbl 0168.38701
[4] HUNT, G. A., Markoff processes and potentials. 111. J. Math. 1 (1957), 44-93, 316 369 2 (1958), 151-213. · Zbl 0100.13804
[5] IKEDA, N., K. SATO, H. TANAKA, AND T. UENO, Boundary problems in multi dimensional diffusion processes, II. Seminar on Prob. 6 (1961). (Japanese)
[6] KUNITA, H., and T. WATANABE, Markov processes and Martin boundaries. (T appear) · Zbl 0114.33603
[7] McKEAN, H. P. JR., AND H. TANAKA, Additive functionals of the Brownian path Mem. Coll. Sci. Univ. Kyoto, Ser. A. 33 (1961), 479-506. · Zbl 0100.34201
[8] MEYER, P. -A., Semi-groupes en dualite. Seminaire de theorie du potentiel dirig par M. Brelot, G. Choquet et J. Deny, 5e annee, 1960/61.
[9] MEYER, P. -A, , Fonctionnelles multiplicatives et additives de Markov. Ann. Inst Fourier 12 (1962), 125-230. · Zbl 0138.40802
[10] MOTOO, M., Representation of a certain class of excessive functions and a gene rator of Markov process. Sci. Pap. Coll. Gen. Ed. Univ. Tokyo, 12 (1962), 143-159. · Zbl 0109.11701
[11] NAGASAWA, M., The adjoint process of diffusion with reflecting barrier, Kda Math. Sem. Rep. 13 (1961), 235-248. · Zbl 0102.14101
[12] SATO, K., Time change and killing for multi-dimensional reflecting diffusion Proc. Japan Acad. 39 (1963), 69-73. · Zbl 0132.38602
[13] VOLKONSK, V. A., Additive functionals of Markov processes. Trudy Mosk. Mat Ob. 9 (1960), 143-189. (Russian)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.