×

zbMATH — the first resource for mathematics

Caractères des algèbres de Banach involutives. (French) Zbl 0124.07003

PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] N. BOURBAKI, Intégration, Act. Sc. Ind., n° 1175 et 1244, Paris, Hermann, 1952 et 1956.
[2] N. BOURBAKI, Espaces vectoriels topologiques, Act. Sc. Ind., n° 1189 et 1229, Paris, Hermann, 1953 et 1955.
[3] P. J. COHEN, Factorization in group algebras, Duke Math. J., t. 26, 1959, pp. 199-205. · Zbl 0085.10201
[4] J. DIXMIER, LES algèbres d’opérateurs dans l’espace hilbertien, Cahiers Scientifiques, fasc. 25, Paris, Gauthier-Villars, 1957. · Zbl 0088.32304
[5] J. DIXMIER, Sur LES C*-algèbres, Bull. Soc. Math. France, t. 88, 1960, pp. 95-112. · Zbl 0124.32403
[6] J. DIXMIER, Sur LES structures boréliennes du spectre d’une C*-algèbre, Inst. Hautes Etudes Sci. Publ. Math., n° 6, 1960. · Zbl 0104.09101
[7] J. DIXMIER, Dual et quasi-dual d’une algèbre de Banach involutive (à paraître). · Zbl 0112.07302
[8] J. A. ERNEST, A decomposition theory for unitary representations of locally compact groups (à paraître). · Zbl 0112.07403
[9] J. M. G. FELL, The dual spaces of C*-algebras, Trans. Amer. Math. Soc., t. 94, 1960, pp. 365-403. · Zbl 0090.32803
[10] J. M. G. FELL, C*-algebras with smooth duals, Illinois J. Math., t. 4, 1960, pp. 221-230. · Zbl 0094.09702
[11] J. GLIMM, A. STONE-Weierstrass theorem for C*-algebras, Ann. Math., t. 72, 1960, pp. 216-244. · Zbl 0097.10705
[12] J. GLIMM, Type I C*-algebras, Ann. Math., t. 73, 1961, pp. 572-612. · Zbl 0152.33002
[13] R. GODEMENT, Sur la théorie des représentations unitaires, Ann. Math., t. 53, 1951, pp. 68-124. · Zbl 0042.34606
[14] R. GODEMENT, Théorie des caractères II, Ann. Math., t. 59, 1954, pp. 63-85. · Zbl 0055.02103
[15] A. GUICHARDET, Une caractérisation des algèbres de von Neumann discrètes, Bull. Soc. Math. France., t. 89, 1961, pp. 77-101. · Zbl 0168.11302
[16] A. GUICHARDET, Sur LES représentations factorielles des C*-algèbres, C. R. Acad. Sc., t. 252, 1961, pp. 1088-1089. · Zbl 0098.30803
[17] A. GUICHARDET, Sur LES caractères des algèbres de Banach à involution, C. R. Acad. Sc., t. 252, 1961, pp. 2800-2802. · Zbl 0198.47405
[18] A. GUICHARDET, Représentations unitaires de certains produits semi-directs, C. R. Acad. Sc., t. 253, 1961, pp. 48-50. · Zbl 0132.11204
[19] A. GUICHARDET, Sur LES structures boréliennes du dual et du quasi-dual d’une C*-algèbre, C. R. Acad. Sc. t. 253, 1961, pp. 2030-2032. · Zbl 0195.42101
[20] P. R. HALMOS, Lectures on ergodic theory, Math. Soc. Japan, 1956. · Zbl 0073.09302
[21] E. HOPF, Ergodentheorie, Berlin, J. Springer, 1937. · Zbl 0017.28301
[22] I. KAPLANSKY, The structure of certain operator algebras, Trans. Amer. Math. Soc., t. 70, 1951, pp. 219-255. · Zbl 0042.34901
[23] M. LOÉVE, Probability theory, Van Nostrand Company 1955.
[24] L. H. LOOMIS, An introduction to abstract harmonic analysis, Van Nostrand Company, 1953). · Zbl 0052.11701
[25] G. W. MACKEY, Imprimitivity for representations of locally compact groups, I. Proc. Nat. Acad. Sc., t. 35, 1949, pp. 537-545. · Zbl 0035.06901
[26] G. W. MACKEY, On induced representations of groups, Amer. J. Math., t. 73, 1951, pp. 576-592. · Zbl 0045.30305
[27] G. W. MACKEY, Induced representations of locally compact groups, Ann. Math., t. 55, 1952, pp. 101-139. · Zbl 0046.11601
[28] G. W. MACKEY, Borel structures in groups and their duals, Trans. Amer. Math. Soc., t. 85, 1957, pp. 134-165. · Zbl 0082.11201
[29] F. J. MURRAY and J. von NEUMANN, On rings of operators, Ann. Math., t. 37, 1936, pp. 116-229. · JFM 62.0449.03
[30] N. A. NAIMARK, Normed rings, Groningen, Noordhoff, 1959. · Zbl 0089.10102
[31] M. A. NAIMARK, Factor representations of a locally compact group, Soviet Math. Doklady, 1960, pp. 1064-1066. · Zbl 0100.32207
[32] N. NAKAMURA, The two-sided representations of an operator algebra, Proc. Japan. Acad., t. 27, 1951, pp. 172-176. · Zbl 0042.35002
[33] L. PUKANSZKY, Some examples of factors, Publ. Math., t. 4, 1956, pp. 135-156. · Zbl 0070.34401
[34] C. E. RICKART, General theory of Banach algebras, Van Nostrand Company, 1960. · Zbl 0095.09702
[35] I. E. SEGAL, An extension of Plancherel’s formula to separable unimodular groups, Ann. Math., t. 52, 1950, pp. 272-292. · Zbl 0045.38502
[36] I. E. SEGAL, A class of operator algebras which are determined by groups, Duke Math. J., t. 18, 1951, pp. 221-265. · Zbl 0045.38601
[37] O. TAKENOUCHI, Sur une classe de fonctions continues de type positif sur un groupe localement compact, Math. J. Okayama Univ., t. 4, 1955, pp. 143-173. · Zbl 0064.11102
[38] T. TURUMARU, Crossed-product of operator algebras, Tôhoku Math. J., t. 10, 1958, pp. 355-365. · Zbl 0087.31803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.