Weinert, H. J. Über Halbringe und Halbkörper. I, II. (German) Zbl 0125.01002 Acta Math. Acad. Sci. Hung. 13, 365-378 (1962), 14, 209-227 (1963). Reviewer: K. Iséki Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 34 Documents MSC: 16Y60 Semirings 12K10 Semifields Keywords:semirings; semifields × Cite Format Result Cite Review PDF Full Text: DOI References: [1] R. Baer, Inverses and zero-divisors,Bull. Amer. Math. Soc. 48 (1942), S. 630–638. · Zbl 0060.07103 · doi:10.1090/S0002-9904-1942-07750-0 [2] G. Birkhoff,Lattice theory (2. Aufl., New York, 1948). · Zbl 0033.10103 [3] S. Bourne, The Jacobson radical of a semiring,Proc. Nat. Acad. Sci. of USA,37 (1951), S. 163–170. · Zbl 0042.03201 · doi:10.1073/pnas.37.3.163 [4] S. Bourne, On multiplicative idempotents of a potent semiring,Proc. Nat. Acad. Sci. of USA,42 (1956), S. 632–638. · Zbl 0071.25602 · doi:10.1073/pnas.42.9.632 [5] S. Bourne, H. Zassenhaus, On a Wedderburn-Artin structure theory of a potent semiring,Proc. Nat. Acad. Sci. of USA,43 (1957), S. 613–615. · Zbl 0078.02101 · doi:10.1073/pnas.43.7.613 [6] S. Bourne, H. Zassenhaus, On the semiradical of a semiring,Proc. Nat. Acad. Sci. of USA,44 (1958), S. 907–914. · Zbl 0084.03403 · doi:10.1073/pnas.44.9.907 [7] S. Bourne, On compakt semirings,Proc. Jap. Acad.,35 (1959), S. 332–334. · Zbl 0092.03005 · doi:10.3792/pja/1195524283 [8] S. Bourne, On the radical of a positiv semiring,Proc. Nat. Acad. Sci. of USA,45 (1959), S. 519. · Zbl 0092.03001 · doi:10.1073/pnas.45.10.1519 [9] K. Iseki, Y. Miyanaga, Notes on topological spaces. III, IV,Proc. Jap. Acad.,32 (1956), S. 325–328; 392–395. · Zbl 0070.02803 · doi:10.3792/pja/1195525375 [10] K. Iseki, Notes on topological spaces. V,Proc. Jap. Acad.,32 (1956), S. 426–429. · Zbl 0072.40302 · doi:10.3792/pja/1195525309 [11] K. Iseki, Idealtheory of semirings,Proc. Jap. Acad.,32 (1956), S. 554–559. · Zbl 0073.01902 · doi:10.3792/pja/1195525272 [12] K. Iseki, Y. Miyanaga, On a radical in a semiring,Proc. Jap. Acad.,32, (1956), S. 562–563. · Zbl 0073.01903 · doi:10.3792/pja/1195525274 [13] K. Iseki, Ideals in semirings,Proc. Jap. Acad.,34 (1958), S. 29–31. · Zbl 0092.03003 · doi:10.3792/pja/1195524845 [14] K. Iseki, Quasiideals in semirings without zero,Proc. Jap. Acad.,34 (1958), S. 79–81. · Zbl 0080.25401 · doi:10.3792/pja/1195524783 [15] K. Iseki, On ideals in semiring,Proc. Jap. Acad.,34 (1958), S. 507–509. · Zbl 0085.02101 · doi:10.3792/pja/1195524563 [16] N. Kimura, The structure of idempotent semigroups (I),Pacific J.,8 (1958), S. 257–275. · Zbl 0084.02702 · doi:10.2140/pjm.1958.8.257 [17] L. Rédel,Algebra. l, deutsche Ausg. (Leipzig, 1959). [18] W. Slowikowski W. Zawadowski, A generalization of maximal ideals method of Stone and Gelfand,Fund. ath.,42 (1955), S. 216–231. [19] O. Steinfeld, Über die Struktursätze der Semiringe,Acta Math. Acad. Sci. Hung.,10 (1959), S. 149–155. · Zbl 0087.02801 · doi:10.1007/BF02063296 [20] H. S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold,Bull. Amer. Math. Soc.,40 (1934), S. 914–920. · Zbl 0010.38804 · doi:10.1090/S0002-9904-1934-06003-8 [21] H. S. Vandiver, On some simple types of semirings,Am. Math. Monthly. 46 (1939), S. 22–26. · Zbl 0020.19904 · doi:10.2307/2302918 [22] H. S. Vandiver, On the imbedding of one semigroup in another with application to semirings,Am. J.,62 (1940), S. 72–78. · JFM 66.0097.03 [23] H. S. Vandiver, A development of associative algebra and an algebraic theory of numbers. I, II,Math. Mag.,25 (1952);27 (1954). · Zbl 0049.30601 [24] H. S. Vandiver-M. W. Weaver, A development of associative algebra and an algebraic theory of numbers. III, IV,Math. Mag.,29 (1955);30 (1956). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.