Sorani, Giuliano Homologie des q-paires de Runge. (French) Zbl 0126.09701 Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 17, 319-332 (1963). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 9 Documents Keywords:complex functions PDF BibTeX XML Cite \textit{G. Sorani}, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 17, 319--332 (1963; Zbl 0126.09701) Full Text: Numdam EuDML References: [1] Andreotti A. et Frankel T. , The Lefschetz theorem on hyperplane sections , Annals of Math 69 ( 1959 ) pag. 713 - 717 . MR 177422 | Zbl 0115.38405 · Zbl 0115.38405 · doi:10.2307/1970034 [2] Andreotti A. et Grauert H. , Théorèmes de finitude pour la cohomologie des espaces complexes . Bull. Soc. Math. de France T. 90 ( 1962 ) pag. 193 - 259 . Numdam | MR 150342 | Zbl 0106.05501 · Zbl 0106.05501 · numdam:BSMF_1962__90__193_0 · eudml:87019 [3] Andreotti A. et Narasimhan R. , A topological property of Runge Pairs Annals of Math. 76 ( 1962 ) pag. 499 - 509 . MR 140714 | Zbl 0178.42703 · Zbl 0178.42703 · doi:10.2307/1970370 [4] Behnke H. et Stein K. , Approximation analytischer Functionen in vorgegebenen Gebieten des Raumes von n komplexen Veränderlichen . Nachr. Ges. der Wissenschaften zu. Göttingen ( 1939 ) pag. 195 - 202 . Zbl 0020.03603 | JFM 65.1243.02 · Zbl 0020.03603 · www.emis.de [5] Cartan H. , Séminaire E. N. S. 1951 / 52 . Numdam · numdam.org:80 [6] Doquier F. et Grauert H. , Levisches Problem und Rungescher Satz fur Teilgebiete Steinscher Mannigfaltigkeiten . Math. Annalen 140 ( 1960 ) pag. 94 - 123 . MR 148939 | Zbl 0095.28004 · Zbl 0095.28004 · doi:10.1007/BF01360084 · eudml:160766 [7] Narasimhan R. , The Levi problem for complex spaces , Math Annalen 142 ( 1961 ) pag. 355 - 365 . MR 148943 | Zbl 0106.28603 · Zbl 0106.28603 · doi:10.1007/BF01451029 · eudml:160840 [8] Sorani G. , Omologia degli spazi q-pseudoconvessi . Ann. Scuola Normale Sup. Pisa Vol. XVI ( 1962 ) pag. 299 - 304 . Numdam | MR 157005 | Zbl 0192.18403 · Zbl 0192.18403 · numdam:ASNSP_1962_3_16_3_299_0 · eudml:83287 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.