Azpeitia, A. G. On the maximum modulus and the maximum term of an entire Dirichlet series. (English) Zbl 0126.29003 Proc. Am. Math. Soc. 12, 717-721 (1961). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 6 Documents Keywords:complex functions × Cite Format Result Cite Review PDF Full Text: DOI References: [1] J. F. Ritt, On Certain Points in the Theory of Dirichlet Series, Amer. J. Math. 50 (1928), no. 1, 73 – 86. · JFM 54.0363.03 · doi:10.2307/2370849 [2] Gustav Doetsch, Über die obere Grenze des absoluten Betrages einer analytischen Funktion auf Geraden, Math. Z. 8 (1920), no. 3-4, 237 – 240 (German). · JFM 47.0274.03 · doi:10.1007/BF01206529 [3] S. Mandelbrojt, Séries de Fourier et classes quasi-analytiques de fonctions, Paris, Gauthier-Villars, 1935. · Zbl 0013.11006 [4] S. Mandelbrojt, Dirichlet series, Rice Inst. Pamphlet 31 (1944), 159 – 272. · Zbl 0063.03767 [5] A. G. Azpeitia, El orden precisado en las funciones enteras, Memorias de Matemáticas del Instituto Jorge Juan, no. 15, Consejo Superior de Investigaciones Científicas, Madrid, 1955. [6] Kinjiro Sugimura, Übertragung einiger Sätze aus der Theorie der ganzen Funktionen auf Dirichletsche Reihen, Math. Z. 29 (1929), no. 1, 264 – 277 (German). · JFM 54.0365.01 · doi:10.1007/BF01180529 [7] Qazi Ibadur Rahman, On the maximum modulus and the coefficients of an entire Dirichlet series, Tôhoku Math. J. (2) 8 (1956), 108 – 113. · Zbl 0074.29803 · doi:10.2748/tmj/1178245013 [8] G. Valiron, Lectures on the general theory of integral functions, New York, Chelsea, 1949. [9] R. San Juan, Los fundamentos de una teoría general de series divergentes, Rev. Acad. Ci. Madrid vol. 45 (1951) pp. 121-149. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.