×

zbMATH — the first resource for mathematics

Local times for Markov processes. (English) Zbl 0126.33701

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Austin, D. G., R. M. Blumenthal, and R. V. Chacon: On continuity of transition functions. Duke math. J. 25, 533-542 (1958). · Zbl 0084.13201 · doi:10.1215/S0012-7094-58-02547-X
[2] Blumenthal, R. M., and R. K. Getoor: Sample functions of stochastic processes with stationary independent increments. J. Math. Mech., 10, 493-516 (1961). · Zbl 0097.33703
[3] ?, and H. P. McKean, Jr.: Markov processes with identical hitting distributions. Illinois J. Math. 6, 402-420 (1962). · Zbl 0133.40903
[4] - Additive functional of Markov processes in duality. To appear in Trans. Amer. math. Soc.
[5] Bochner, S.: Harmonic analysis and the theory of probability. Berkeley and Los Angeles, Univ. of Calif. Press. 1955. · Zbl 0068.11702
[6] Boylan, E.S.: Local times for a class of Markov processes. Illinois J. Math. 8, 19-39 (1964). · Zbl 0126.33702
[7] Dynkin, E. B.: Theory of Markov processes (English translation) Englewood Cliffs, N.J., Prentice-Hall, 1961.
[8] Getoor, R. K.: The asymptotic distribution of the number of zero free intervals of a stable process. Trans. Amer. math. Soc., 106, 127-138 (1963). · Zbl 0114.08401
[9] Hunt, G. A.: Markov processes and potentials I, II, and III. Illinois. J. Math., 1, 44-93, 316-369 (1957), and 2, 151-213 (1958). · Zbl 0100.13804
[10] Karlin, S., and J. McGregor: Classical diffusion processes and total positivity. Journ. Math. Anal. and Appl., 1, 163-183 (1960). · Zbl 0101.11102 · doi:10.1016/0022-247X(60)90020-2
[11] Lamperti, J.: An invariance principle in renewal theory. Ann. math. Statistics, 33, 685-696 (1962). · Zbl 0106.33902 · doi:10.1214/aoms/1177704590
[12] McKean, H. P., jr., and K. Ito: Diffusion theory, forthcoming book.
[13] Meyer, P. A.: Fonctionelles multiplicatives et additives de Markov. Ann. Inst. Fourier, 12, 125-230 (1962). · Zbl 0138.40802
[14] Stone, C. J.: The set of zeros of a semi-stable process. Illinois Journ. Math., 7, 631-637 (1963). · Zbl 0121.12906
[15] ?ur, M. G.: Continuous additive functionals of a Markov process. Doklady Akad. Nauk. SSSR, n. Ser. 137, 800-803, (1961) (in Russian). Translated in Soviet Mathematics, 2, 365-368 (1961).
[16] Trotter, H. F.: A property of Brownian motion paths. Illinois J. Math., 2, 425-433 (1958). · Zbl 0117.35502
[17] Volkonski, V. A.: Additive functionals of a Markov process. Trudy Moskovsk math. Ob??., 9, 143-189 (1960) (in Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.