×

zbMATH — the first resource for mathematics

On the Navier-Stokes initial value problem. I. (English) Zbl 0126.42301

Keywords:
fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cattabriga, L., Su un problema al contorno relativo al sistema di equazioni di Stokes. Rendiconti Seminario Mat. Univ. Padova, 31, 1-33 (1961). · Zbl 0116.18002
[2] Golovkin, K. K., & B. A. Solonnikov, On the first boundary value problem for the non-stationary Navier-Stokes equation. Doklady Akad. Nauk USSR 140, 287-290 (1961).
[3] Fujita, H., On the existence and regularity of the steady-state solutions of the Navier-Stokes equation. J. Fac. Sci., Univ. Tokyo, Sec. I 9, 59-102 (1961). · Zbl 0111.38502
[4] Fujita, H., Unique existence of solutions of the Navier-Stokes initial value problem, (an application of fractional powers of operators). Sûgaku (Iwanami) 14, 65-81 (1962). · Zbl 0122.10102
[5] Hopf, E., Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213-231 (1951). · Zbl 0042.10604
[6] Ito, S., The existence and the uniqueness of regular solution of non-stationary Navier-Stokes equation. J. Fac. Sci., Univ. Tokyo, Sec. I 9, 103-140 (1961). · Zbl 0116.17905
[7] Kato, T., Abstract evolution equation of parabolic type in Banach and Hilbert spaces. Nagoya Math. J. 19, 93-125 (1961). · Zbl 0114.06102
[8] Kato, T., Fractional powers of dissipative operators. J. Math. Soc. Japan 13, 246-274 (1961). · Zbl 0113.10005
[9] Kato, T., A generalization of the Heinz inequality. Proc. Japan Acad. 37, 305-308 (1961). · Zbl 0104.09304
[10] Kato, T., & H. Fujita, On the non-stationary Navier-Stokes system. Rendiconti Seminario Math. Univ. Padova 32, 243-260 (1962). · Zbl 0114.05002
[11] Kiselev, A. A., & O. A. Ladyzhenskaia, On existence and uniqueness of the solution of the non-stationary problem for any incompressible viscous fluid. Izv. Akad. Nauk. USSR, 21, 655-680 (1957).
[12] Ladyzhenskaia, O. A., Solution ?in the large? of the non-stationary boundary value problem for the Navier-Stokes system with two space variables. Comm. Pure Appl. Math. 12, 427-433 (1959). · Zbl 0103.19502
[13] Ladyzhenskaia, O. A., Mathematical Problems for Dynamics of Viscous Incompressible Fluids. Moscow 1961.
[14] Leray, J., Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl., Ser. IX 12 1-82 (1933). · Zbl 0006.16702
[15] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193-248 (1934). · JFM 60.0726.05
[16] Lions, J. L., Sur la régularité et l’unicité des solutions turbulentes des équations de Navier-Stokes. Rendiconti Seminario Mat. Univ. Padova 30, 16-23 (1960). · Zbl 0098.17205
[17] Lions, J. L., Sur les espaces d’interpolation; dualité. Math. Scand. 9, 147-177 (1961). · Zbl 0103.08102
[18] Lions, J. L., & G. Prodi, Un théorème d’existence et unicité dans les équations de Navier-Stokes en dimension 2. C.R. Acad. Sci. Paris 248, 3519-3521 (1959). · Zbl 0091.42105
[19] Odqvist, F. K. G., Über die Randwertaufgabe der Hydrodynamik zäher Flüssigkeiten. Math. Z. 32, 329-375 (1930). · JFM 56.0713.04
[20] Ohyama, T., Interior regularity of weak solutions of the time-dependent Navier Stokes equation. Proc. Japan Acad. 36, 273-277 (1960). · Zbl 0100.22404
[21] Oseen, C. W., Hydrodynamik. Leipzig 1927.
[22] Serrin, J., On the interior regularity of weak solutions of the Navier-Stokes equation. Arch. Rational Mech. Anal. 9, 187-195 (1962). · Zbl 0106.18302
[23] Sobolevskii, P. E., On non-stationary equations of hydrodynamics for viscous fluid. Doklady Akad. Nauk USSR 128, 45-18 (1959).
[24] Sobolevskii, P. E., On the smoothness of generalized solutions of the Navier-Stokes equation, ibid Nauk USSR 131, 758-760 (1960).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.