×

zbMATH — the first resource for mathematics

Weak compactness and reflexivity. (English) Zbl 0127.32502

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Banach,Thèorie des opérations linéaires, Warsaw, 1932. · Zbl 0005.20901
[2] M. M. Day,Normed linear spaces, Academic Press, New York, 1962. · Zbl 0100.10802
[3] W. F. Eberlein,Weak compactness in Banach spaces, Proc. Nat. Acad. Sci. U.S.A.33 (1947), 51–53. · Zbl 0029.26902
[4] M. Eidelheit,Zur Theorie der konvexen Mengen in linearten normierten Räumen, Studia Math.6 (1963), 104–111. · JFM 62.1235.02
[5] V. Gantmaher and V. Smul’yan,Sur les espaces linéaires dont la sphère unitaire est faiblement compacte, Dokl. Akad. Nauk SSSR17 (1937), 91–94.
[6] A. Grothendieck,Critères de compacticité dans les espaces fonctionnels généraux, Amer. J. Math.74 (1952), 168–186. · Zbl 0046.11702
[7] M. M. Grunblum,Certain théorèmes sur la base dans un espace de type (B), Dokl. Akad. Nauk SSSR,31 (1941), 428–432. · Zbl 0027.07701
[8] R. C. James,Reflexivity and the supremum of linear functionals, Ann. of Math.66 (1957), 159–169. · Zbl 0079.12704
[9] R. C. James,Characterizations of reflexivity, Studia Math.23 (1964), 205–216. · Zbl 0113.09303
[10] R. C. James,Weak compactness and separation, Canad. J. Math.16 (1964), 204–206. · Zbl 0117.08202
[11] R. C. James,Weakly compact sets, Trans. Amer. Math. Soc.113 (1964), 129–140. · Zbl 0129.07901
[12] J. L. Kelley and I. Namioka,Linear topological spaces, Van Nostrand, Princeton, 1963. · Zbl 0115.09902
[13] V. L. Klee, Jr.,Convex sets in linear spaces, Duke Math. J.18 (1951), 875–883. · Zbl 0044.11201
[14] M. Krein and V. Smul’yan,On regularly convex sets in the space conjugate to a Banach space, Ann. of Math.41 (1940), 556–583. · Zbl 0024.41305
[15] D. Milman,On some criteria for the regularity of spaces of the type (B), Dokl. Akad, Nauk SSSR20 (1938), 243–246. · Zbl 0019.41601
[16] D. P. Milman and V. D. Milman,Some geometric properties of nonreflexive spaces, Soviet Math.4 (1963), 1250–1252.
[17] A. Pełczyński,A note on the paper of I. Singer ”Basic sequences and reflexivity of Banach spaces”, Studia Math.21 (1962), 371–374. · Zbl 0114.30904
[18] V. Pták,Two remarks on weak compactness, Czechoslovak Math. J.5 (1955), 532–545. · Zbl 0068.31604
[19] V. Pták,Biorthogonal systems and reflexivity of Banach spaces, Czechoslovak Math. J.9 (1959), 319–326. · Zbl 0114.30901
[20] V. Smul’yan,On the principle of inclusion in the space of type (B), Mat. Sb.5 (1939), 317–328. · Zbl 0022.23302
[21] J. W. Tukey,Some notes on the separation of convex sets, Portugal. Math.3 (1942), 95–102. · Zbl 0028.23202
[22] K. Pełczyński,A proof of Eberlein-Šmulian theorem by an application of basic sequences, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.12 (1964), 539–544. · Zbl 0187.05402
[23] I. Singer,Basic sequences and reflexivity of Banach spaces, Studia Math.21 (1962), 351–369. · Zbl 0114.30903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.