Genchev, T. G. Ultraparabolic equations. (English. Russian original) Zbl 0128.32503 Sov. Math., Dokl. 4, 979-982 (1963); translation from Dokl. Akad. Nauk SSSR 151, 265-268 (1963). Equations of the type \[ \sum_{i,j=1}^n a_{ij}\frac{\partial^2u}{\partial x_i\partial x_j}+\sum_{i=1}^n b_i\frac{\partial u}{\partial x_i}=a_0\frac{\partial u}{\partial t}+\sum_{k=1}^m b_i\frac{\partial u}{\partial y_k}+bu+f \] are considered with \(\sum a_{ij}(x,y,t)\,\xi_i\,\xi_j\geq\mu\sum\xi_i^2\) and \(a_0(x,y,t)>\lambda>0\). Existence and uniqueness theorems for boundary value and Cauchy problems are stated. Reviewer: R. Carroll Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 5 Documents MSC: 35K70 Ultraparabolic equations, pseudoparabolic equations, etc. Keywords:Ultraparabolic equations; existence; uniqueness boundary value problem; Cauchy problem PDF BibTeX XML Cite \textit{T. G. Genchev}, Sov. Math., Dokl. 4, 979--982 (1963; Zbl 0128.32503); translation from Dokl. Akad. Nauk SSSR 151, 265--268 (1963)