Flatto, L. The converse of Gauß’s theorem for harmonic functions. (English) Zbl 0132.07804 J. Differ. Equations 1, 483-490 (1965). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 12 Documents Keywords:partial differential equations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Courant-Hilbert, (Methoden der Mathematische Physik, Vol. 2 (1937), Springer: Springer Berlin) · Zbl 0017.39702 [2] Delsarte, J., Lectures on topics in mean periodic functions and the two-radius theorem (1961), Tata Institute of Fundamental Research: Tata Institute of Fundamental Research Bombay [3] Friedman, A., Generalized Functions and Partial Differential Equations (1963), Prentice Hall: Prentice Hall Englewood Cliffs, New Jersey · Zbl 0116.07002 [4] John, F., Plane Waves and Spherical Means (1955), Interscience: Interscience New York · Zbl 0067.32101 [5] Kahane, J. P., Sur quelques problèmes d’unicité et de prolongement relatifs aux fonctions approchables par des sommes d’exponentielles, Ann. Inst. Fourier Grenoble, 5, 39-130 (1953-1954) · Zbl 0064.35903 [6] Kellogg, O. D., Foundations of Potential Theory (1907), Dover: Dover New York · Zbl 0053.07301 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.