×

zbMATH — the first resource for mathematics

On the construction of certain diffusions on a differentiable manifold. (English) Zbl 0132.12702

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Doob, J. L.: Stochastic Processes. New York: John Wiley and Sons 1953. · Zbl 0053.26802
[2] ?: A probability approach to the heat equation. Trans. Amer. math. Soc. 80, 216-280 (1955). · Zbl 0068.32705
[3] ?: Brownian motion on a Green space. Theory Probability Appl. (USSR) 2, 1-29 (1957).
[4] Dynkin, E. B.: Foundations of the theory of Markov processes. Englewood Cliffs, N.J.: Prentice-Hall 1961. · Zbl 0091.13605
[5] ?: Additive functionals of a Wiener process determined by stochastic integrals. Theory Probability Appl. (USSR) 5, 402-411 (1960).
[6] ?: Markov processes and semigroups of operators. Theory Probability Appl. (USSR) 1, 22-33 (1956).
[7] Eisenhart, L.: Riemannian Geometry. Princeton University Press, Princeton, New Jersey. · Zbl 0174.53303
[8] ItÔ, K.: Stochastic differential equations on a differentiable manifold. Nagoya math. J. 1, 35-47 (1950).
[9] ?: A formula concerning stochastic differentials. Nagoya math. J. 3, 55-65 (1951). · Zbl 0045.07603
[10] Lévy, P.: Processus Stochastiques et le mouvement Brownien. Paris: Gauthier-Villars 1937.
[11] Maruyama, G.: Continuous Markov processes and stochastic equations. Rend. Circ. mat. Palermo, II. Ser. 4, 48-89 (1955). · Zbl 0053.40901
[12] McKean, H. P., Jr.: Brownian motion on the 3-dimensional rotation group. Mem. Fac. Sci., Kvoto Univ., Ser. A 23, 25-38 (1960). · Zbl 0107.12505
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.