×

zbMATH — the first resource for mathematics

ABCRATE: A program for the calculation of atom-diatom reaction rates. (English) Zbl 0932.80005
Summary: ABCRATE is a computer program for the calculation of atom-diatom chemical reaction rates for systems with collinear dominated dynamics. The dynamical methods used are conventional or generalized transition state theory (GTST) and multidimensional semiclassical approximations for tunneling and nonclassical reflection. The GTST methods included in this version of the program are the canonical and improved canonical variational transition state theory (VTST) and the canonical unified statistical (CUS) method. Rate constants may be calculated for canonical ensembles or for specific vibrational states of selected modes with translational, rotational, and other vibrational modes treated thermally. The potential energy surface required by the program may be a global or semiglobal analytic function. The reaction path is calculated as the path of steepest descent in mass-scaled coordinates from a collinear saddle point, and vibrations transverse to the reaction path are treated by curvilinear internal coordinates. The vibrational modes are quantized, and anharmonicity may be included by various options, including the WKB approximation for bond stretches and the centrifugal oscillator approximation through quartic terms for the curvilinear bend coordinate. Tunneling probabilities are calculated by a variety of semiclassical methods, in particular zero-curvature tunneling (ZCT), small-curvature tunneling (SCT), large-curvature tunneling (LCT), least-action tunneling (LAT), and the microcanonical optimized multidimensional tunneling (\(\mu\)OMT) methods.
MSC:
80M30 Variational methods applied to problems in thermodynamics and heat transfer
80A32 Chemically reacting flows
92E20 Classical flows, reactions, etc. in chemistry
Software:
ABCRATE; POLYRATE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Glasstone, S.; Laidler, K.J.; Eyring, H., The theory of rate processes, (1941), McGraw-Hill New York
[2] Johnston, H.S., Gas phase reaction rate theory, (1966), Ronald Press New York
[3] Kreevoy, M.M.; Truhlar, D.G., (), 13
[4] Laidler, K.J., Chemical kinetics, (1987), Harper and Row New York
[5] Garrett, B.C.; Truhlar, D.G.; Garrett, B.C.; Truhlar, D.G.; Garrett, B.C.; Truhlar, D.G.; Garrett, B.C.; Truhlar, D.G.; Garrett, B.C.; Truhlar, D.G., J. phys. chem., J. phys. chem., J. phys. chem., J. phys. chem., J. phys. chem., 87, 4553(E), (1983)
[6] Garrett, B.C.; Truhlar, D.G., J. phys. chem., 84, 805, (1980)
[7] Garrett, B.C.; Truhlar, D.G.; Grev, R.S.; Magnuson, A.W., J. phys. chem., 84, 1730, (1980)
[8] Truhlar, D.G.; Garrett, B.C., Acc. chem. res., 13, 440, (1980)
[9] Truhlar, D.G.; Garrett, B.C., Annu. rev. phys. chem., 35, 159, (1984)
[10] Truhlar, D.G.; Isaacson, A.D.; Garrett, B.C., (), 65
[11] Truhlar, D.G.; Garrett, B.C., J. chim. phys., 84, 365, (1987)
[12] Truhlar, D.G.; Kuppermann, A., J. am. chem. soc., 93, 1840, (1971)
[13] Truhlar, D.G.; Isaacson, A.D.; Skodje, R.T.; Garrett, B.C.; Truhlar, D.G.; Isaacson, A.D.; Skodje, R.T.; Garrett, B.C., J. phys. chem., J. phys. chem., 87, 4554(E), (1983)
[14] Garrett, B.C.; Truhlar, D.G.; Wagner, A.F.; Dunning, T.H., J. chem. phys., 78, 4400, (1983)
[15] Garrett, B.C.; Truhlar, D.G., J. chem. phys., 79, 4931, (1983)
[16] Garrett, B.C.; Abusalbi, N.; Kouri, D.J.; Truhlar, D.G., J. chem. phys., 83, 2252, (1985)
[17] Lu, D.-H.; Truong, T.N.; Melissas, V.S.; Lynch, G.C.; Liu, Y.-P.; Garrett, B.C.; Steckler, R.; Isaacson, A.D.; Rai, S.N.; Hancock, G.C.; Lauderdale, J.G.; Joseph, T.; Truhlar, D.G., Comput. phys. commun., 71, 235, (1992)
[18] Liu, Y.-P.; Lynch, G.C.; Truong, T.N.; Lu, D.-H.; Truhlar, D.G.; Garrett, B.C., J. am. chem. soc., 115, 2408, (1993)
[19] Truhlar, D.G., J. mol. spectrosc., 38, 415, (1971)
[20] Garrett, B.C.; Truhlar, D.G., J. phys. chem., 83, 1915, (1979)
[21] Garrett, B.C.; Truhlar, D.G., J. chem. phys., 81, 309, (1984)
[22] Garrett, B.C.; Truhlar, D.G., J. phys. chem., 95, 10374, (1991)
[23] Wigner, E., Z. phys. chem. B, 19, 203, (1932)
[24] Truhlar, D.G.; Hase, W.L.; Hynes, J.T.; Truhlar, D.G.; Hase, W.L.; Hynes, J.T., J. phys. chem., J. phys. chem., 87, 5523(E), (1983)
[25] Clary, D.C., J. chem. phys., 83, 1685, (1985)
[26] Garrett, B.C.; Truhlar, D.G.; Schatz, G.C., J. am. chem. soc., 108, 2876, (1986)
[27] Haug, K.; Schwenke, D.W.; Truhlar, D.G.; Zhang, Y.; Zhang, J.Z.H.; Kouri, D.J., J. chem. phys., 87, 1892, (1987)
[28] Zhang, J.Z.H.; Zhang, Y.; Kouri, D.J.; Garrett, B.C.; Haug, K.; Schwenke, D.W.; Truhlar, D.G., Faraday discuss. chem. soc., 84, 371, (1987)
[29] Lynch, G.C.; Truhlar, D.G.; Garrett, B.C., J. chem. phys., 90, 3102, (1989)
[30] Lynch, G.C.; Halvick, P.; Truhlar, D.G.; Garrett, B.C.; Schwenke, D.W.; Kouri, D.J., Z. naturforsch., 44a, 427, (1989)
[31] T.C. Allison, D.G. Truhlar, in: Modern Methods for Multidimensional Dynamics Calculations in Chemistry, D.L. Thompson, ed. (World Scientific, Singapore), in press.
[32] Tucker, S.C.; Truhlar, D.G., (), 291
[33] Garrett, B.C.; Truhlar, D.G., J. am. chem. soc., 101, 4534, (1979)
[34] Garrett, B.C.; Truhlar, D.G., J. chem. phys., 72, 3460, (1980)
[35] Garrett, B.C.; Truhlar, D.G., J. chem. phys., 70, 1593, (1979)
[36] Skodje, R.T.; Truhlar, D.G.; Garrett, B.C., J. phys. chem., 85, 3019, (1981)
[37] Liu, Y.-P.; Lu, D.-H.; Gonzàlez-Lafont, A.; Truhlar, D.G.; Garrett, B.C., J. am. chem. soc., 115, 7806, (1993)
[38] Bondi, D.K.; Connor, J.N.L.; Garrett, B.C.; Truhlar, D.G., J. chem. phys., 78, 5981, (1993)
[39] Natanson, G.A., J. chem. phys., 93, 6589, (1990)
[40] Kronrod, A.S., Nodes and weights of quadrature formulas, (1965), Consultants Bureau New York · Zbl 0154.18501
[41] Garrett, B.C.; Truhlar, D.G., VTST, CCP6 program library program no. 37, ()
[42] Steckler, R.; Hu, W.-P.; Liu, Y.-P.; Lynch, G.C.; Garrett, B.C.; Isaacson, A.D.; Melissas, V.S.; Lu, D.-H.; Truong, T.N.; Rai, S.N.; Hancock, G.C.; Lauderdale, J.G.; Joseph, T.; Truhlar, D.G., Comput. phys. commun., 88, 341, (1995)
[43] Steckler, R.; Chuang, Y.-Y.; Fast, P.L.; Coitiño, E.L.; Corchado, J.C.; Hu, W.-P.; Liu, Y.-P.; Lynch, G.C.; Nguyen, K.A.; Jackels, C.F.; Gu, M.Z.; Rossi, I.; Clayton, S.; Melissas, V.S.; Garrett, B.C.; Isaacson, A.D.; Truhlar, D.G., ()
[44] Hu, W.-P.; Lynch, G.C.; Liu, Y.-P.; Rossi, I.; Stewart, J.J.P.; Steckler, R.; Garrett, B.C.; Isaacson, A.D.; Lu, D.-H.; Melissas, V.S.; Truhlar, D.G., Comput. phys. commun., 88, 344, (1995)
[45] Chuang, Y.-Y.; Fast, P.L.; Hu, W.-P.; Lunch, G.C.; Liu, Y.-P.; Truhlar, D.G., MORATE-version 7.5, (September 1997)
[46] Corchado, J.C.; Coitiño, E.L.; Chuang, Y.-Y.; Truhlar, D.G., GAUSSRATE-version 7.4.1, (September 1997)
[47] Truhlar, D.G., (), 229
[48] Hu, W.-P.; Liu, Y.-P.; Truhlar, D.G., J. chem. soc. Faraday trans., 90, 1715, (1994)
[49] Chung, Y.-Y.; Truhlar, D.G., J. phys. chem. A, 101, 3808, (1997)
[50] Gonzalez-Lafont, A.; Truong, T.N.; Truhlar, D.G., J. chem. phys., 95, 8875, (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.