Fivaz, M.; Brunner, S.; de Ridder, G.; Sauter, O.; Tran, T. M.; Vaclavik, J.; Villard, L.; Appert, K. Finite element approach to global gyrokinetic particle-in-cell simulations using magnetic coordinates. (English) Zbl 0944.76035 Comput. Phys. Commun. 111, No. 1-3, 27-47 (1998). Summary: We present a fully-global linear gyrokinetic simulation code (GYGLES) aimed at describing the unstable spectrum of the ion-temperature-gradient modes in toroidal geometry. We formulate the particle-in-cell method with finite elements defined in magnetic coordinates, which provides numerical convergence. The poloidal mode structure corresponding to \(k_{\parallel}= 0\) is extracted without approximation from the equations, which reduces drastically the numerical resolution needed. The code can simulate routinely modes with both very long and very short toroidal wavelengths, can treat realistic MHD equilibria of any size, and runs on a massively parallel computer. Cited in 7 Documents MSC: 76M10 Finite element methods applied to problems in fluid mechanics 76X05 Ionized gas flow in electromagnetic fields; plasmic flow 76W05 Magnetohydrodynamics and electrohydrodynamics Keywords:microinstabilities; fully-global linear gyrokinetic simulation code GYGLES; ion-temperature-gradient modes; toroidal geometry; particle-in-cell method; magnetic coordinates; numerical convergence; poloidal mode; MHD equilibria; massively parallel computer Software:CHEASE; ERATO; GYGLES; XTOR PDF BibTeX XML Cite \textit{M. Fivaz} et al., Comput. Phys. Commun. 111, No. 1--3, 27--47 (1998; Zbl 0944.76035) Full Text: DOI References: [1] Hazeltine, R.D.; Newcomb, W.A., Phys. fluids B, 2, 7, (1990) [2] Rewoldt, G.; Tang, W.M.; Chance, M.S., Phys. fluids, 25, 480, (1982) [3] Xu, X.Q.; Rosenbluth, N.M., Phys. fluids B, 3, 627, (1991) [4] Kotschenreuther, M.; Rewoldt, G.; Tang, W.M., Comput. phys. commun., 88, 128, (1995) [5] Fonck, R.J.; Cosby, G.; Durst, R.D.; Paul, S.F.; Bretz, N.; Scott, S.; Synakowski, E.; Taylor, G., Phys. rev. lett., 70, 3736, (1993) [6] Durst, R.; Fonck, R.J.; Kim, J.S.; Paul, S.F.; Bretz, N.; Bush, C.; Chang, Z.; Hulse, R., Phys. rev. lett., 71, 3135, (1993) [7] Marchand, R.; Tang, W.; Rewoldt, G., Phys. fluids, 23, 1164, (1980) [8] Tang, W.M.; Rewoldt, G., Phys. fluids B, 5, 2451, (1992) [9] Artun, M.; Tang, W.M.; Rewoldt, G., Phys. plasmas, 2, 3384, (1995) [10] Lee, W.W., Phys. fluids, 26, 556, (1983) [11] Parker, S.E.; Lee, W.W.; Santoro, R.A., Phys. rev. lett., 71, 2042, (1993) [12] Sydora, R.D.; Decyk, V.K.; Dawson, J.M., Plasma phys. control. fusion, 38, A281, (1996) [13] Brunner, S., (), 1701, thesis [14] Fivaz, M., (), 1692, thesis [15] Lütjens, H.; Bondeson, A.; Sauter, O., Comput. phys. commun., 97, 219, (1996) [16] Hahm, T.S., Phys. fluids, 31, 2670, (1988) [17] Fivaz, M.; Tran, T.; Appert, K.; Vaclavik, J.; Parker, S.E., Phys. rev. lett., 78, 3471, (1997) [18] Fivaz, M.; Sauter, O.; Appert, K.; Tran, T.M.; Vaclavik, J., Physics of plasmas, (1998), to be submitted [19] Birdsall, C.K.; Langdon, A.B., Plasma physics via computer simulations using particles, (1985), McGraw-Hill Switzerland [20] Eastwood, J.W., Comput. phys. commun., 64, 252, (1991) [21] Byers, J.A.; Dimits, A.M.; Matsuda, Y.; Langdon, A.B., J. comput. phys., 115, 352, (1994) [22] Cohen, B.I.; Auerbach, S.P.; Byers, J.A., Phys. fluids, 23, 2529, (1980) [23] Friedman, A.; Sudan, R.N.; Denavit, J., J. comput. phys., 40, 1, (1981) [24] Friedman, A.; Denavit, J.; Sudan, R.N., J. comput. phys., 44, 104, (1981) [25] Press, W.H.; Flannery, B.P; Teukolsky, S.A.; Vetterling, W., Numerical recipes, (1986), Cambridge Univ. Press New York · Zbl 0587.65005 [26] Lee, W.W., J. comput. phys., 72, 243, (1987) [27] O’haeseleer, W.O.; Hitchon, W.N.G.; Callen, J.O.; Shoher, J.L., Flux coordinates, magnetic field structure, (1991), Springer New York [28] Gruber, R.; Troyon, F; Berger, D.; Bernard, L.C.; Rousset, S.; Schreiber, R.; Kerner, W; Schneider, W.; Roberts, K.V., Comput. phys. commun., 21, 323, (1981) [29] Mikhailovskii, A.B., () [30] Horton, W., Phys. fluids, 24, 1077, (1983) [31] Brunner, S.; Fivaz, M.; Vaclavik, J.; Tran, T.M.; Appert, K., (), 101 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.