×

zbMATH — the first resource for mathematics

Orlicz spaces and nonlinear elliptic eigenvalue problems. (English) Zbl 0133.05301

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Melvyn S. Berger, An eigenvalue problem for quasi-linear elliptic partial differential equations, Bull. Amer. Math. Soc. 71 (1965), 171 – 175. · Zbl 0125.33602
[2] Melvyn S. Berger, An eigenvalue problem for nonlinear elliptic partial differential equations, Trans. Amer. Math. Soc. 120 (1965), 145 – 184. · Zbl 0142.08402
[3] Melvyn S. Berger, A Sturm-Liouville theorem for nonlinear elliptic partial differential equations, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1277 – 1279. · Zbl 0173.43504
[4] Felix E. Browder, Variational methods for nonlinear elliptic eigenvalue problems, Bull. Amer. Math. Soc. 71 (1965), 176 – 183. · Zbl 0135.15802
[5] Ju. A. Dubinskiĭ, Some imbedding theorems in Orlicz classes, Dokl. Akad. Nauk SSSR 152 (1963), 529 – 532 (Russian).
[6] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415 – 426. · Zbl 0102.04302 · doi:10.1002/cpa.3160140317 · doi.org
[7] M. A. Krasnosel\(^{\prime}\)skiĭ and Ja. B. Rutickiĭ, Convex functions and Orlicz spaces, Translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, 1961.
[8] Norman Levinson, Positive eigenfunctions for \Delta \?+\?\?(\?)=0, Arch. Rational Mech. Anal. 11 (1962), 258 – 272. · Zbl 0108.28902 · doi:10.1007/BF00253940 · doi.org
[9] Norman G. Meyers, Mean oscillation over cubes and Hölder continuity, Proc. Amer. Math. Soc. 15 (1964), 717 – 721. · Zbl 0129.04002
[10] James Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247 – 302. · Zbl 0128.09101 · doi:10.1007/BF02391014 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.