×

zbMATH — the first resource for mathematics

Nuclear vector lattices. (English) Zbl 0134.10803

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Amemiya, I., andT. Mori: Topological structure in ordered linear spaces. J. Math. Soc. Jap.9, 131–142 (1957). · Zbl 0077.30901 · doi:10.2969/jmsj/00910131
[2] Birkhoff, G.: Lattice theory. New York 1948. · Zbl 0033.10103
[3] Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc.16 (1955).
[4] Köthe, G.: Topologische Lineare Räume I. Berlin-Göttingen-Heidelberg: Springer 1960. · Zbl 0093.11901
[5] Mityagin, B. S.: Approximate dimension and bases in nuclear spaces. Uspechi Math. Nauk16: 4, 69–132 (1961). · Zbl 0104.08601
[6] Nakano, H.: Linear topologies on semi-ordered linear space. J. Fac. Sci. Hokkaido Univ. Ser. I12, 87–104 (1953). · Zbl 0053.25702
[7] Pietsch, A.: Absolute Summierbarkeit in Vektorverbänden. Math. Nachr.26, 15–23 (1963). · Zbl 0116.31303 · doi:10.1002/mana.19630260103
[8] —- Eine neue Charakterisierung der nuklearen lokalkonvexen Räume I, II. Math. Nachr.25, 31–36, 49–58 (1963). · Zbl 0108.10602 · doi:10.1002/mana.19630250105
[9] —- Zur Theorie der topologischen Tensorprodukte. Math. Nachr.25, 19–30 (1963). · Zbl 0108.10901 · doi:10.1002/mana.19630250104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.