×

zbMATH — the first resource for mathematics

Reflective functors in general topology and elsewhere. (English) Zbl 0134.40705

Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Garrett Birkhoff, Lattice Theory, American Mathematical Society Colloquium Publications, vol. 25, revised edition, American Mathematical Society, New York, N. Y., 1948. · Zbl 0033.10103
[2] Garrett Birkhoff, The meaning of completeness, Ann. of Math. (2) 38 (1937), no. 1, 57 – 60. · JFM 63.0568.01 · doi:10.2307/1968509 · doi.org
[3] Peter Freyd, Abelian categories. An introduction to the theory of functors, Harper’s Series in Modern Mathematics, Harper & Row, Publishers, New York, 1964. · Zbl 0121.02103
[4] Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. · Zbl 0093.30001
[5] Roger Godement, Topologie algébrique et théorie des faisceaux, Actualit’es Sci. Ind. No. 1252. Publ. Math. Univ. Strasbourg. No. 13, Hermann, Paris, 1958 (French). · Zbl 0080.16201
[6] Daniel M. Kan, Adjoint functors, Trans. Amer. Math. Soc. 87 (1958), 294 – 329. · Zbl 0090.38906
[7] John L. Kelley, General topology, D. Van Nostrand Company, Inc., Toronto-New York-London, 1955. · Zbl 0066.16604
[8] S. MacLane, Categorical algebra, Amer. Math. Soc. Colloquium Lectures, Proceedings of the Summer Seminar, Univ. of Colorado, Boulder, Col., 1963. · Zbl 0161.01601
[9] Pierre Samuel, Ultrafilters and compactification of uniform spaces, Trans. Amer. Math. Soc. 64 (1948), 100 – 132. · Zbl 0032.31401
[10] Gail S. Young Jr., The introduction of local connectivity by change of topology, Amer. J. Math. 68 (1946), 479 – 494. · Zbl 0060.40204 · doi:10.2307/2371828 · doi.org
[11] Andrew M. Gleason, Universal locally connected refinements, Illinois J. Math. 7 (1963), 521 – 531. · Zbl 0117.16101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.