×

zbMATH — the first resource for mathematics

On a class of countably paracompact spaces. (English) Zbl 0134.41403

Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. H. Dowker, On countably paracompact spaces, Canadian J. Math. 3 (1951), 219 – 224. · Zbl 0042.41007
[2] J. G. Horne, Jr., Countable paracompactness and cb-spaces, Notices Amer. Math. Soc. 6 (1959), 629-630.
[3] Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. · Zbl 0093.30001
[4] Fumie Ishikawa, On countably paracompact spaces, Proc. Japan Acad. 31 (1955), 686 – 687. · Zbl 0066.41001
[5] M. J. Mansfield, On countably paracompact normal spaces, Canad. J. Math. 9 (1957), 443 – 449. · Zbl 0080.15802 · doi:10.4153/CJM-1957-052-5 · doi.org
[6] K. Morita, Paracompactness and product spaces, Fund. Math. 50 (1961/1962), 223 – 236. · Zbl 0099.17401
[7] Tadashi Ishii, Some characterizations of \?-paracompact spaces. I, Proc. Japan Acad. 38 (1962), 480 – 483. Tadashi Ishii, Some characterizations of \?-paracompact spaces. II, Proc. Japan Acad. 38 (1962), 651 – 654. · Zbl 0114.14003
[8] J. E. Mack and D. G. Johnson, The Dedekind completion of \?(\?), Pacific J. Math. 20 (1967), 231 – 243. · Zbl 0152.39802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.