Zeeman, E. C. Twisting spun knots. (English) Zbl 0134.42902 Trans. Am. Math. Soc. 115, 471-495 (1965). Reviewer: Lee P. Neuwirth Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 7 ReviewsCited in 102 Documents MSC: 57-XX Manifolds and cell complexes Keywords:topology Citations:Zbl 0103.39503; JFM 51.0450.02 PDF BibTeX XML Cite \textit{E. C. Zeeman}, Trans. Am. Math. Soc. 115, 471--495 (1965; Zbl 0134.42902) Full Text: DOI References: [1] E. Artin, Zur Isotopie zweidimensionalen Flächen im \( {R_4}\), Abh. Math. Sem. Univ. Hamburg 4 (1926), 174-177. [2] D. B. A. Epstein, Embedding punctured manifolds, Proc. Amer. Math. Soc. 16 (1965), 175 – 176. · Zbl 0129.39502 [3] R. H. Fox, Some problems in knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 168 – 176. · Zbl 1246.57011 [4] Herman Gluck, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962), 308 – 333. · Zbl 0111.18804 [5] Barry Mazur, Symmetric homology spheres, Illinois J. Math. 6 (1962), 245 – 250. · Zbl 0103.39503 [6] Lee Neuwirth, The algebraic determination of the genus of knots, Amer. J. Math. 82 (1960), 791 – 798. · Zbl 0117.41001 [7] V. A. Rohlin, New results in the theory of four-dimensional manifolds, Doklady Akad. Nauk SSSR (N.S.) 84 (1952), 221 – 224 (Russian). [8] Horst Schubert, Knoten mit zwei Brücken, Math. Z. 65 (1956), 133 – 170 (German). · Zbl 0071.39002 [9] H. Seifert and W. Threllfall, Lehrbuch der Topologie, Teubner, Leipzig, 1934. · JFM 60.0496.05 [10] P. A. Smith, Transformations of finite period. II, Ann. of Math. (2) 40 (1939), 690 – 711. · Zbl 0021.43002 [11] John Stallings, On fibering certain 3-manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 95 – 100. · Zbl 1246.57049 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.