×

The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics. (English) Zbl 0134.45703


Keywords:

quantum theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wigner E. P., Nachr. Akad. Wiss. Göttingen, Math. Physik. Kl. 546 (1932)
[2] DOI: 10.1215/S0012-7094-37-00313-2 · Zbl 0016.39305 · doi:10.1215/S0012-7094-37-00313-2
[3] DOI: 10.2307/1969956 · Zbl 0077.31901 · doi:10.2307/1969956
[4] DOI: 10.2307/1969956 · Zbl 0077.31901 · doi:10.2307/1969956
[5] DOI: 10.2307/1969956 · Zbl 0077.31901 · doi:10.2307/1969956
[6] DOI: 10.2307/1969956 · Zbl 0077.31901 · doi:10.2307/1969956
[7] DOI: 10.1063/1.1703773 · Zbl 0105.41604 · doi:10.1063/1.1703773
[8] Loewy A., Trans. Am. Math. Soc. 4 pp 171– (1903)
[9] Frobenius G., Sitzber. Preuss. Akad. Wiss., Physik.-Math. Kl. 186 (1906)
[10] Frobenius G., J. Reine U. Angew. Math. 84 pp 59– (1878)
[11] DOI: 10.1103/PhysRevLett.7.291 · doi:10.1103/PhysRevLett.7.291
[12] Stueckelberg E. C. G., Helv. Phys. Acta 32 pp 254– (1959)
[13] Stueckelberg E. C. G., Helv. Phys. Acta 33 pp 727– (1960)
[14] DOI: 10.1063/1.1703794 · doi:10.1063/1.1703794
[15] DOI: 10.1063/1.1703794 · doi:10.1063/1.1703794
[16] DOI: 10.1063/1.1703794 · doi:10.1063/1.1703794
[17] DOI: 10.1063/1.1703794 · doi:10.1063/1.1703794
[18] DOI: 10.2307/1968599 · Zbl 0017.29705 · doi:10.2307/1968599
[19] Rosenzweig N., Bull. Am. Phys. Soc. 7 pp 91– (1962)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.