zbMATH — the first resource for mathematics

On groups in which every subgroup is subnormal. (English) Zbl 0135.04901

group theory
Full Text: DOI
[1] Dedekind, R, Über gruppen, deren sämtliche teiler normalteiler sind, Math. ann., 48, 548-561, (1896) · JFM 28.0129.03
[2] Fitting, H, Beiträge zur theorie der gruppen von endlicher ordnung, Jber. Deutsch. math. verein., 48, 77-141, (1938) · JFM 64.0066.02
[3] Gruenberg, K.W, The upper central series in soluble groups, Illinois J. math., 3, 436-466, (1961) · Zbl 0244.20028
[4] Hall, P, On non-strictly simple groups, (), 531-553 · Zbl 0118.03601
[5] Hall, P, Some sufficient conditions for a group to be nilpotent, Illinois J. math., 2, 787-801, (1958) · Zbl 0084.25602
[6] Hall, M, The theory of groups, (1959), Macmillan New York
[7] Kuroš, A.G; Černikov, S.N; Kuroš, A.G; Černikov, S.N, Soluble and nilpotent groups, Uspehi mat. nauk, Am. math. soc. transl., 3, no. 80, 18-59, (1953), English translation:
[8] Mal’cev, A.I, Nilpotent torsion-free groups, Izv. akad. nauk. SSSR, ser. mat., 13, 201-212, (1949), (Russian)
[9] McLain, D.H, Locally nilpotent groups, (), 5-11 · Zbl 0070.02103
[10] Zassenhaus, H, The theory of groups, (1958), Chelsea New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.